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Enlightened by the theory of Watanabe [Watanabe S (1987) Analysis of Wiener functionals (Malliavin calculus) and its
applications to heat kernels. Ann. Probab. 15:1-39] for analyzing generalized random variables and its further development
in Yoshida [Yoshida N (1992a) Asymptotic expansions for statistics related to small diffusions. J. Japan Statist. Soc. 22:
139-159], Takahashi [Takahashi A (1995) Essays on the valuation problems of contingent claims. Ph.D. thesis, Haas School
of Business, University of California, Berkeley, Takahashi A (1999) An asymptotic expansion approach to pricing contingent
claims. Asia-Pacific Financial Markets 6:115-151] as well as Kunitomo and Takahashi [Kunitomo N, Takahashi A (2001) The
asymptotic expansion approach to the valuation of interest rate contingent claims. Math. Finance 11(1):117-151, Kunitomo
N, Takahashi A (2003) On validity of the asymptotic expansion approach in contingent claim analysis. Ann. Appl. Probab.
13(3):914-952] etc., we focus on a wide range of multivariate diffusion models and propose a general probabilistic method of
small-time asymptotic expansions for approximating option price in simple closed-form up to an arbitrary order. To explicitly
construct correction terms, we introduce an efficient algorithm and novel closed-form formulas for calculating conditional
expectation of multiplication of iterated stochastic integrals, which are potentially useful in a wider range of topics in applied
probability and stochastic modeling for operations research. The performance of our method is illustrated through various
models nested in constant elasticity of variance type processes. With an application in pricing options on VIX under GARCH
diffusion and its multifactor generalization to the Gatheral double lognormal stochastic volatility models, we demonstrate
the versatility of our method in dealing with analytically intractable non-Lévy and non-affine models. The robustness of the
method is theoretically supported by justifying uniform convergence of the expansion over the whole set of parameters.
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1. Introduction. Modeling and pricing of increasingly sophisticated derivative securities are central to finan-
cial engineering. Modeling is usually a trade-off between mathematical tractability and empirical performance.
To explain and fit market trading data, however, increasingly more recent research indicates that some analyti-
cally tractable models may not be able to render satisfactory empirical performance compared with those having
less mathematical tractability. For instance, Christoffersen et al. [14] have demonstrated the superior empirical
features of the GARCH diffusion specification of stochastic volatility over the well-known square- root specifica-
tion proposed in Heston [36] for modeling the volatility of S&P500 index returns. Also, Gatheral [27] has shown
that the double lognormal specification of stochastic volatility outperforms the double Heston type specification
for modeling options on VIX (the CBOE implied volatility index, see CBOE [12]). However, both the GARCH
diffusion and the double lognormal stochastic volatility models belong to the large family of non-Lévy and
non-affine diffusions (see Dai and Singleton [18]), for which characteristic functions do not exist in closed form.
Thus, most analytical methods (e.g., the Fourier or Laplace transform inversions) heavily relying on analytical
tractability of the models are not applicable. Therefore, the closed-form asymptotic expansion method becomes
a viable option for providing flexible, efficient, and easy-to-implement solutions.

From a technical perspective, asymptotic expansions have become prevalent in option valuation owing to
their efficiency and flexibility. Among others, a well-known method is based on perturbations of partial differ-
ential equations (hereafter PDE); see, e.g., Hagan et al. [33], Andersen and Brotherton-Ratcliffe [3], Fouque
et al. [25, 26], Takahashi and Yamada [69], and Kato et al. [44]. Another attractive approach is a probabilis-
tic method based on the theory for analyzing generalized Wiener functionals (random variables) initiated by
Watanabe [74] and its substantial development in favor of a small-diffusion setting (by parameterizing an auxil-
iary parameter only in diffusion components of underlying models) for statistical inference and option valuation
in, e.g., Yoshida [76], Takahashi [61, 62], Kunitomo and Takahashi [48, 49], and Osajima [57]. Resorting to
calculation of the first several orders of the expansions, various applications can also be found in, e.g., Kunitomo
and Takahashi [47], Uchida and Yoshida [72], Takahashi and Takehara [64, 65], Takahashi [63], Takahashi
and Yamada [70], Takahashi and Toda [68], Kawai [45], Jaeckel and Kawai [40], Gobet et al. [30, 31], and
Mirquez-Carreras and Sanz-Solé [52].

However, to achieve better accuracy, robustness, and reliability and to make the implementation as comparably
convenient as that of Monte Carlo simulation, seeking for relatively simple closed-form formulas or computa-
tionally efficient algorithms in order to symbolically implement high-order correction terms has become one of
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the major tasks for various asymptotic expansion methods. Among many others, at a level of generality and
an expense of complexity, a recursion-based framework regardless of particular types of parameterization is
outlined in Takahashi et al. [66, 67] with emphasis on small-diffusion type expansion aiming at the valuation of
options with relatively long maturities. As an indispensable development of the asymptotic expansion methods,
we will alternatively focus on small-time type expansion, which has become an important analytical method in
financial engineering because of its simplicity and the concrete economic interpretations; see, e.g., Hagan and
Woodward [34], Hagan et al. [33], Andersen and Brotherton-Ratcliffe [3] and Section 10 in Lipton [50] for
approximating option prices via PDE-based perturbation methods as well as Takahashi and Yamada [69] for
approximating heat kernels via the integration-by-parts techniques of Malliavin calculus; see, e.g., chapter 1 in
Nualart [55].

Focusing on a wide range of diffusion models, we will propose a general closed-form formula (with only basic
mathematical operations without recursions or integrations) up to an arbitrary order for small-time expansion of
option price via a probabilistic approach. The application of It6-Stratonovich stochastic calculus and the theory
of Watanabe [74] leads to the analytical tractability, Simplicity, and versatility of our closed-form expansion,
particularly for some sophisticated models, in which small-diffusion expansions involve numerically solving
ordinary differential equations and calculating integrals owing to the complexity of drift and diffusion functions;
see, e.g., the nonlinear stochastic variance and nonlinear drift model for spot interest rates and variance proposed
and investigated in Ait-Sahalia [1] and Bakshi et al. [4]. To pragmatically build any arbitrary closed-form
expansion term, we propose an efficient algorithm for calculating conditional expectation of multiplication of
iterated Stratonovich integrals driven by multidimensional Brownian motions. At the heart of this algorithm, we
employ combinatorial analysis to establish a novel closed-form formula for computing conditional expectation
of multiplication of iterated Itd integrals. These developments substantially generalize the existing results( see,
e.g., Nualart et al. [56], Yoshida [76], Takahashi [61, 62], Kunitomo and Takahashi [48, 49], and Takahashi
et al. [66, 67]) and are potentially useful in a wide range of studies in applied probability and stochastic modeling
for operations research.

Without loss of generality, we demonstrate the performance of our method using the celebrated constant
elasticity of variance (CEV) type process (see, e.g., Cox [16] and Davydov and Linetsky [19]), in which several
commonly used models are nested. In addition, we apply our method in the valuation of options on VIX, which
is a challenging issue in derivatives valuation. As a fundamental instrument for hedging, call options on VIX
have become effective tools for managing downside risk. For instance, through rolling options on VIX with one-
month maturity, the VXTH (VIX tail hedge) proposed in CBOE [13] has uniformly outperformed the S&P500
index during the financial depressions; see CBOE [13]. We apply our method to the valuation of options on
VIX under the GARCH diffusion stochastic volatility model (see Christoffersen et al. [14]) and its multifactor
extension to the Gatheral double lognormal model (see, e.g., Gatheral [27]). Such applications demonstrate the
versatility of our method in dealing with analytically intractable non-Lévy and non-affine models as well as
nonlinear payoff functions.

It is noteworthy that the convergence of our expansion can be guaranteed theoretically under some sufficient
conditions on the specification of the underlying model. As shown in the computational results, however, the
applicability of the expansions is not confined to the models, of which the sufficient conditions for convergence
are strictly satisfied, but instead is extendable to a wide range of commonly used derivatives pricing models.
Similar to other existing applications of small-time expansions ( e.g., Andersen and Brotherton-Ratcliffe [3],
Hagan and Woodward [34], Hagan et al. [33], and Takahashi and Yamada [69]) numerical illustrations suggest
that our method does not necessarily require the option maturity to be small in order to deliver satisfactory
performance. At least in principle, arbitrary accuracy could be obtained by employing high-order expansions
based on our general formulas and algorithms. However, we note that, as demonstrated in the computational
results given in §5, the performance of the expansions is reasonably model dependent.

The rest of this paper is organized as follows. In §2, we propose the model and a basic setup. In §3, we
build up a general framework for obtaining closed-form asymptotic expansion up to an arbitrary order for option
valuation. Section 4 is devoted to establishing algorithms and closed-form formulas for the computation of
conditional expectation of multiplication of iterated stochastic integrals, which plays a central role in constructing
the expansions. In §5, we demonstrate the performance of our method through several examples including the
valuation of European options under various CEV type models, as well as the valuation of options on VIX under
the GARCH diffusion and the Gatheral double lognormal stochastic volatility models. We conclude this paper
in §6. The proofs are provided in Appendices A and B.
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2. The model and basic setup. We consider a risk-neutral specification of a general multivariate diffusion
model governed by the following stochastic differential equation (hereafter SDE):

dX(t) = w(X (1), 0)dt + (X (1), 0)dW (1),  X(0) = x4 = (Xo1» Xz - - - » Xo,)s (1)

where X () is an m-dimensional vector of state variables; x, = (xo;, Xg25 - - - » Xo,,) 1S the initial state; {W(z)}
is a d-dimensional standard Brownian motion; 6 represents a vector of model parameters belonging to a
bounded open set O; w(x, 0) = (u,(x,6),...,u,(x,0)) is an m-dimensional vector function; and o(x, 8) =
(03;(x, 6)),1xq 1 @an m x d matrix-valued function. For ease of exposition and without loss of generality, we
assume that m = d and drop the parameter vector 6 throughout the rest of this paper. Let E(C R™) denote the
state space (all possible values) of X. Suppose the price of an underlying asset satisfies

S(1) = f(X(®), @)

for some function f(x) sufficiently smooth in E with (df/dx,,df/dx,,...,df/dx,,) # 0. Without loss of
generality, we assume that df/dx; #0.

A simplest one-dimensional example is the celebrated Black-Scholes-Merton model (see Black and Scholes [6]
and Merton [53]), for which the functions are specified as

f(x)=x, n(x)=rx, and o(x)=ox,

for some positive constants » and o representing the risk-free interest rate and constant volatility, respectively.
Slightly more general in order to reflect the leverage effect between the asset return and its random volatility, the
constant elasticity of variance model (see, e.g., Cox [16] and Davydov and Linetsky [19]) can be specified via

f(x)=x, n(x)=rx, and o(x) =8xP, 3)

for some constants 6 and . Also, by setting

F (x5 x3)) = xy, w((xy, x,)) = ( e ) , and  o((x,,x,)) = < VXX, 0 )

Mo (X5) 051 (X)) Op(x,)

for some functions u,(-), 0y,(-), and 0,,( ), we create a model for incorporating stochastic volatility; see, e.g.,
Fouque et al. [25] and the references therein. In particular, by letting u,(x,) = k(6 — x,) for some positive k
and 0, we model the mean-reversion effect in the stochastic variance; by letting 0, (x,) = p. /%, and 0, (x,) =
Vv 1—p?/x,, for some constant —1 < p <1, we obtain the well-known Heston stochastic volatility model (see
Heston [36]). Alternatively, by letting o, (x,) = px, and 0,,(x,) =+/1 — p?x,, we build the GARCH diffusion
stochastic volatility model, which is recently shown to be a popular candidate for empirically fitting the volatility
of S&P500 returns; see, e.g., Christoffersen et al. [14] and Barone-Adesi et al. [5].

On a level of generality, we suppose that a derivative security pays out p(S(7")) for some payoff function
p(x) at a maturity time 7. Assuming the risk-free interest rate r to be a constant, the initial arbitrage-free price
of this derivative is given by

V(0):=E[e™" p(S(T))] = E[e™"" p(f(X(T)))]- (4)

Except for a limited number of mathematically tractable models, V(0) is usually calculated by various numerical
methods such as Monte Carlo simulation, numerical methods of partial differential equations, and approxima-
tions by binomial (or multinomial) lattice. However, for efficient calibration of the model to market trading
data, simple closed-form formulas or analytical approximations are preferred to avoid repeated calculations
for optimization. In this paper, we propose an easy-to-implement method for calculating closed-form asymp-
totic expansion approximation for option valuation. Without loss of generality and for ease of exposition, we
demonstrate our method via the valuation of a call option with a payoff function

p(x) :=(x—K)" =max(x — K,0) for some strike K. (5)

Before closing this section, we introduce the following technical assumptions in order to guarantee the theo-
retical validity of our expansion. Let A(x) = o (x)o(x)" = (a;(x)),,,, denote the diffusion matrix.

AsSUMPTION 1. The diffusion matrix A(x) is positive definite, i.e., det A(x) > 0, for any x in E (the state
space of the underlying diffusion X).

Ay
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ASSUMPTION 2. For each integer k > 1, the kth order derivatives in x of the functions u(x; 0) and o(x; 6)
are uniformly bounded for any (x,6) € E x ©.

ASSUMPTION 3. For each integer k > 1, the kth order derivatives in x of the function f(x) are bounded in E.

Assumptions 1 and 2 are standard and conventionally proposed in the study of SDEs (see, e.g., Ikeda and
Watanabe [38]). They are sufficient (but do not need to be necessary) to guarantee the existence and uniqueness
of the solution and many other desirable technical properties. As shown in what follows, under these conditions,
the theory of Watanabe [74] guarantees validity of the expansion discussed in this paper. Theoretical relaxation
on these conditions may involve case-by-case treatments and standard approximation arguments, which is beyond
the scope of this paper and can be regarded as a future research topic.

3. Closed-form expansion for option valuation.

3.1. Explicit path-wise expansion. Inheriting the tradition of small-time expansions( see, e.g., the PDE
based methods proposed in Andersen and Brotherton-Ratcliffe [3] and Takahashi and Yamada [69]) we choose
€ = /T as a parameter based on which the expansion is carried out. We begin with rescaling (1) as X¢(¢) :=
X (€*t) in order to bring forth finer local behavior of the diffusion process. By integral substitutions and the
Brownian scaling property, it follows that

AX(1) = (X (1)) dt + ea(X(1)dWe (1),  X(0) = x,. (6)

where {W¢€(¢)} is a m-dimensional standard Brownian motion. To simplify notations, we will let W(¢) denote
the scaled Brownian motion W€(¢) in the rest of the paper.

We note that the general framework outlined in Takahashi et al. [66, 67] includes various methods of
parametrization, e.g., the well-studied small-diffusion parametrization (see, e.g., Takahashi [61, 62, 63] and
Uchida and Yoshida [72]) and (6). However, as further demonstrated in what follows, the small-time param-
eterization (6) leads to significant simplicity, explicity, and computational convenience. First, without need of
the general recursion proposed in Takahashi et al. [66, 67], a path-wise expansion of X€(#) can be obtained
in a simple closed-form using appropriate differential operators and iterated Stratonovich integrals via the Itd-
Stratonovich stochastic calculus. Thus, based on the theory of Watanabe [74], an expansion for option valuation
can be explicitly given via proper indices combinations, which leads to convenient symbolic implementation.
In this regard, our explicit expansion formula can be seen as an important closed-form solution to the recursion-
based asymptotic expansion scheme proposed in Takahashi et al. [66, 67]. Second, as discussed in §§3.2 and 4,
the conditional expectations involving iterated stochastic integrals, which centralize the explicit calculation of the
expansions, are irrelevant of the specification of drift or diffusion. Compared with the small-diffusion expansions,
this advantage facilitates the implementation of high-order expansions.

Instead of directly considering the parameterized SDE (6) like most of the existing expansion methods do,
e.g., Takahashi et al. [66, 67], we focus on its equivalent Stratonovich form:

dX<(1t) = Eb(X*(1))dt + e (X<(1)) 0 dW (1), (7)

where o denotes stochastic integrals in the Stratonovich sense and the vector-valued function b(x) =
(by(x), by(x),...,b,(x))T is defined by

m d
) = () = 3 3303, (3) 57,3, ®)

k=1 j=1

In our setting, Stratonovich integrals offer significant computational convenience compared with Itd integrals in
that the Itd-Stratonovich formula resembles the chain rule in classical calculus (see, e.g., Section 3.3 in Karatzas
and Shreve [43]), which will play an important role in constructing a simple closed-form expansion up to any
arbitrary order.

A natural start is to expand f(X€(1)) as a series of € with random coefficients. Following the assumption of

df /ox, # 0, we further assume that there exists a function g: R™ — R such that, for y, = f(xy, x5, ..., X,),
one has x; = g(y,, x,, . . . , x,,). Thus, for computational convenience, we introduce a diffusion process Y¢(t) =
(YF(2), Y5 (1), ..., Y5(t)) defined by

YE(t) = f(X(1) = (X5 (1), X5(8), ..., X (1)), () =X5(1),..., and Ye()=X;(r). (9

Ay
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A straightforward application of the It6-Stratonovich formula yields the following SDE for Y*¢(7):

dY*(1) =€ a(Y(1)dt +eB(Y(N)odW(1),  Y(0)=yy=(f(Xor: Xon: - - - » Xom)» X021 - - -+ Xgm)» (10)

where the drift vector function and the dispersion matrix are specified as follows: for y = (y;, ¥, - - - » ¥,,)>

dx

i=1 i

a(y)= (iﬁ(g(y),yz,- s Ya)bi(8(3)s Vas - V) D2 (8(3)s Vo V) - 5Dy (8(9), 30s - - ,ym)) (11)

and

m

B(y) = <Z %(g(y),yz, e V)0 (8(Y)s Vo e s V) 02.(8(), Yas e s V)s ek e

G (&) - ,ym>) , (12)

where g denotes the jth row vector of the diffusion matrix o. Here, -” denotes the transpose of a matrix.
Inheriting the idea from Watanabe [74] for constructing heat-kernel expansions, we introduce the following
differential operators for expressing the expansion terms in simple closed form:

m a m a .
=3 ez and =3 By, forj=1....d, (13)
i=1 Vi i=1 Yi

which map vector-valued functions to vector-valued functions of the same dimension, respectively. More pre-
cisely, for any v € N and a v-dimensional vector-valued function ¢(y) = (¢,(y), ©:(3), - - -, ©,(¥))7,

(“Ao(@)(v) = (Lo (@1)) (), (Ao (£2)) (V) - - - > (o (@,))(¥))

and

1)) = ((1;(1)) () (A;(@2))(¥)s - -+ (A;(0,))(¥))

for j=1,2,...,d.
Moreover, for an index i = (i;,...,i,) €{0,1,2,...,d}" and a right-continuous stochastic process {f(7)},
we define an iterated Stratonovich integral with integrand f as

A= [ [ [T )0 dW, )0 aW, (1) 0w, (1), (149

which is recursively calculated from inside to outside (see p. 174 of Kloeden and Platen [46]). For ease of
exposition, the order of iterated integrations defined in this paper is the reverse of that employed in Kloeden
and Platen [46] for any arbitrary index. To lighten notations, for f = 1, the integrals J;[1](#) is abbreviated to
Ji(1). By convention, we assume W,(z) :=t and define

n

[[i]l := 2[2 l{ik:()} + l{iﬁéo}] (15)

k=1

as a “norm” of the index i, which counts k& with i, =0 twice.

By regarding Y<(1) as a function of €, it is natural to obtain a path-wise expansion in € with random
coefficients. According to Watanabe [74], we introduce the following coefficient function C;(y) defined by
iterative applications of the differential operators (13):

G(y) =, (- .. (A, (A, (Bi)))- - ) (), (16)

for an index i = (i}, ...,1,). Here, for i; € {1,2,...,d}, the vector B, (¥) = (By;,(¥),- - - B, ()T denotes
the i,th column vector of the dispersion matrix B(y); for i; =0, B8,(y) refers to the drift vector a(y) defined
in (11). Bypassing the general recursion proposed in Takahashi et al. [66, 67], the nature of the small-time param-
eterizations in (7) and (10) renders the following simple closed-form expansion with aid of iterated Stratonovich
integrals of the type (14) based on Theorem 3.3 in Watanabe [74].
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LEMMA 1. Y¢(1) admits the following path-wise asymptotic expansion

J
Y1) =) Ve +a(e’™), (17)
k=0
for any J € N. Here, Y, =y, and Y, can be written as a closed-form linear combination of iterated Stratonovich
integrals, i.e.,
Ye= 3" G0o)i(1), (18)
llill=k
fork=1,2,..., where the integral J,(1), the norm ||i|
respectively.

, and coefficient C;(y,) are defined in (14), (15) and (16),

Indeed, the correction term (18) is obtained from successive applications of the Itd-Stratonovich formula. For
any arbitrary dimension r = 1,2, ..., m, one has the following element-wise form:

J
V()= Y% e +0(e), where ¥, = 3 G, (0)h(D). (19)

k=0 llill=k

with the coefficient

G, (o) :i=sd; (- (A, (4, (B,i)))- - - ) (), for anindex i=(ij,...,1,).

For instance, the first two correction terms are calculated as

d ? - aBri ! n
Y, .= ZBU‘()’O)W,‘(I) and Y,,= a,(yy) + Z ZB”Z ()’O)W]()’O) _/ / ° th‘g(ZZ) ° dWh (1))
Jj=1 1 0 Jo

i, =1 I=I

We note that the expansion (17) is different from the Wiener chaos decomposition (see, e.g., chapter 1 in
Nualart [55]); it can be viewed as a stochastic Stratonovich-Taylor expansion (see, e.g., chapter 6 in Kloeden
and Platen [46]) with an arrangement of correction terms according to the power of small-parameter €. For ease
of exposition, we focus on the derivation of our expansion in this and the next subsection and articulate the
theoretical validity of the expansions in the proofs given in Appendix A.

3.2. Small-time expansion for option valuation: A general framework. In this section, we seek for a
simple closed-form expansion for approximating the price

V(0) =E[e”"" p(f(X(T)))] = e "E[p(f(X“())]=eTE(Y{(1) - K)", (20)

which follows from (4), (5), (7), and (9). To apply the theory of Watanabe [74], we follow the setting in, e.g.,
Takahashi [61], Kunitomo and Takahashi [48, 49], and Takahashi et al. [67], to consider a standardized random
variable

Z:=D(yo)(Y; (1) —yo)/€. (21)
By introducing a standard Brownian motion B(t) defined by

d d —-1/2
BO)= DO LB, 00,0, where D)= (L 8,00 @)
i=1 Jj=1
it is easy to see that Z¢ converges to a standard normal random variable B(1) as € — 0. Assuming that Z¢

admits an expansion

J
Z¢=>"7,e" +0(e'""), forsome JeN, (23)
k=0

the coefficients can be determined by Z; = D(y,)Y,, ;, fori=0,1,2,..., where Y, , | are given by (19). Thus,
the option price (20) can be expressed as

V(0)=€ee"D(y,) 'E(Z° —2)", (24)

where
z2=D(y,)(K — yo1)/€. (25)
Thus, our immediate task is to obtain a closed-form expansion for E(Z€ —z)™.

Ay
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Intuitively speaking, based on the expansion for Z¢ given in (23), brute force applications of the classical
chain rule to a composition of the generalized function T'(x) := (x — z)™ and Z¢ with the variable € yields a
Taylor-type expansion for (Z€ —z)* as follows:

J
(Z°—2)" =) W (2)e" + @(e'™"), forany JeN. (26)
k=0
Here, the initial term is given by W,(z) = (Z,—z)*; for k=1,2, ..., the kth expansion term W, (z) is deter-
mined by
1 owT
V()= Yy = (Z)Z,Z,.,....2Z,,
i n! axn 1 2 n
(n,r(n))eRy;
where the index set is defined as
Py = {(n,x(n) [n=0,1,2,...,v(n) = (ry, sy ..., r,) With ;> 1 and r, +r,+---+r, =k}. (27)

In particular, the derivatives of T are calculated as

T ahT
Fre (x) =8(x —2), and W(x):é(””(x—z), for >3,
X X

aT 9@
T =1{r=2).

where 6(x — z) is the Dirac delta function centered at z. It is well known that the Dirac delta function 6(x) is
a generalized function depending on a real variable x such that it is zero for all values of the x except x = 0;
and its integral over x from —oo to oo is equal to one. For many purposes, the Dirac delta can be intuitively
manipulated as a function, although it is formally defined as a distribution that is also a measure; see, e.g.,
Kanwal [42]. Then, by taking expectations on (26), we obtain an expansion

E[(Z°—2)"]:= XJ:Qk(z)ek +@(e’""), forany JeN, (28)

k=0

where the correction term
W (2) = EY¥(2) (29)

will be explicitly determined in what follows.
For k=0, it is straightforward to deduce the leading term as

Qy(2) =E(Zy—2)" = E(B(1) —2)" =(z) —2(1 = N(2)). (30)

where ¢(-) and N(-) denote the probability density and cumulative distribution functions of a standard normal
variable, respectively. To give a closed-form formula for ,(y) with k > 1, we introduce the following two
operators. For differentiating a product of an arbitrary function and ¢, we define a differential operator &
such that

af (x)

D(f)(x): o

Note that, for any function g(x) and ¢(x), the derivative of g(x)@(x) can be simply expressed using (31) as
follows:

—xf(x), for any function f(x). (31)

LB = | 2-e0) —x¢(0) |8 = S (9.

To explicitly express an integration of a product of a polynomial and ¢, we introduce an integral operator .¥
such that, for an arbitrary polynomial ¢(x):=) a,x",

T@e) = [ g0 du=Ya,q,(x). (32)

where the function ¢, (x) = [ u"$(u) du is defined in the following lemma.

LEMMA 2. Suppose that q,(x) = fxoo u"d(u) du. Thus, {q,(x): n >0} is a sequence of polynomials recur-
sively determined by

() =1-Nx), qa®)=06x). ¢@)=x""¢(x)+{n-1)q,,(x) forn=2,3.... (33)

Ay



Downloaded from informs.org by [222.29.138.135] on 09 May 2014, at 08:35 . For personal use only, all rights reserved.

RIGHTS

Li: Closed-Form Expansion, Conditional Expectation, and Option Valuation
494 Mathematics of Operations Research 39(2), pp. 487-516, ©2014 INFORMS

Proor. It follows from a straightforward application of the Integration by parts. [

At the heart of a closed-form formula for the expansion term (29), we introduce conditional expectations of
the following type

I I d
Posan@i= E( T4, | B) =2) =£( T4, 0| Sam) =), (34)
w=1 w=1 i=1
for some indices i, i,, . . . , i;, where the constant coefficients are defined by
d ~12
A= B,() (Zﬁfk(y0)> , fori=1,2,...,d. (35)
k=1

Starting from It6 [39], investigation of iterated stochastic integrals has become an important and challenging issue
in probablity and stochastic modeling; see, e.g., Kloeden and Platen [46], Houdre and Perez-Abreu [37], Peccati
and Taqqu [58], and the references therein. As an important building block for constructing small-diffusion
type expansions, conditional expectation involving iterated Itd integrals can be found in, e.g., Yoshida [76],
Takahashi [61, 62, 63], Kunitomo and Takahashi [48, 49], Takahashi and Yamada [70], Takahashi et al. [66, 67],
Kawai [45], Jaeckel and Kawai [40], and Gobet et al. [30, 31]. Compared with the conditional expectations
needed for small-diffusion expansions, (34) is irrelevant of the complexity of the functional form of the drift
and diffusion. However, since the large-deviation based expansion for heat-kernel discussed in Watanabe [74],
seeking for algorithms and formulas for calculating conditional expectations involving iterated Stratonovich
integrals in closed form has become an open problem. In §4, we will provide an efficient algorithm for calculating
(34) as a multivariate polynomial in z, which will substantially enhance the feasibility of calculating high-order
expansions.

In the following proposition, we express any arbitrary correction term €, (z) with £ > 1 by a simple closed-
form formula, which can be regarded as an explicit solution to the recursion-based general scheme proposed in
Takahashi et al. [66, 67].

PROPOSITION 1. For any k € N, the kth order correction term Q,(z) admits the following explicit
representation

0 (z) = D(y) Z G, 1(YO)j(P(i))(Z)

lill=k+1
(_1)11*2 n ‘ grn—2
+ > p D(yy) > [1G, 1) )2 (Py,s,...i))(2)D(2), (36)
(n,r’zf)z)'es%k z‘lljl:‘1|=2)+ln v

where D(y,), |-I, G, (Vo) F Py i) P and D are defined in (22), (15), (16), (32), (34), (27),
and (31), respectively.

Proor. See Appendix A.

Without loss of generality, we exemplify the first three closed-form correction terms as follows:

0,(2) =D(y) Y Ci1(3)-T (P (2)s (37)
lil=2

0 =Dy T G I C)@+ 20 T 6006, 0P D@, (Y

llll=3 iy lI=li =2
Q53(2) = D(yo) Z Ci,l(yo)j(P(i))(Z) + D()’o)z Z G, 1()’0)Ci2, l(yO)P(il,iz)(Z)¢(Z)
llill=4 i l1=2. lli|=3
D(y,)’ .
- Z Ci,, l(yO)Ciz,l(yO)Ci3,l(yo)g(P(il,iz,iB))(Z)(b(Z)’ (39)

6

I lI=lkll=i]1=2

where the coefficients are explicitly given by

C(il),l = Bli, (3o)>

m a
C(il, i), 1= Zﬁiiz ()’O)Eﬁlil (¥o)s
i=1 i
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C(il,iz,i3) 1= ZBM (YO) v(ZBllz ()’0) Bu,(%))

oo = 2B () 70 (Zﬁm(yo) A (LAt 00) )

Finally, by plugging (25) into (28) and recalling (24) with € = +/T, a Jth order expansion approximation for
the option price (20) is defined by

J
vy (0) := ﬁe_rTD(J’o)_l Z O (D(yp) (K — y01)/ﬁ)Tk/2’ (40)

k=0
where y, = (f (xo1> X25 - - - » Xom)> X025 - - - » Xo)- Thus, the following proposition states the validity of the expan-

sion (40) under the technical assumptions introduced in §2.

PROPOSITION 2.  Under the technical Assumptions 1, 2, and 3, we have
sup  |V(0) = VD(0)| < cTVHD2, (41)

K>0,x)€S, 0O
for any J € N and some constant ¢ > 0, where S is any compact subset of E (the state space of the diffusion X).
ProOF. See Appendix A.

Before moving to the next section, we remark that the error estimate in (41) is analogous to the characterization
of a remainder term of Taylor expansion for smooth functions in classical calculus. Similar to the theory of
Taylor expansion, such an error estimate is a local property. However, as demonstrated through the computational
results in §5.1, the accuracy of expansions is not restricted to small values of T; instead, the performance can
be enhanced by increasing the number of correction terms.

4. Explicit calculation of conditional expectation (34). In this section, we dwell on a general and efficient
algorithm for explicitly calculating conditional expectation (34), which is different from the existing results on
iterated It6 integrals; see, e.g., Yoshida [76], Takahashi [61, 62, 63], Kunitomo and Takahashi [48, 49], Takahashi
and Yamada [70], Takahashi et al. [66, 67], Kawai [45], Jaeckel and Kawai [40], and Gobet et al. [30, 31].
To introduce a fundamental tool for circumventing the challenge in calculating (34), we generalize (34) to the

following form:
1
Oty ®i=E(TT4() | WD) =x). forx e, @)
w=1

where the conditioning is strengthened to the multidimensional Brownian motion. Such an extension will be
potentially useful in a wide range of studies in theoretical and applied probability as well as stochastic modeling.

4.1. From one-dimensional to multidimensional conditioning. We begin with clarifying how the condi-
tional expectation (34) can be calculated based on (42). For the coefficients (35), we assume A, # 0 without loss
of generality. It follows from (34) that

P(il,iz ,,,,, i) (Z) = /(zz’ C o Zm)ERM 1 <

Wo(1) = 2. ,Wd<1>=zd)

w=1

xqo(zZ,Z»---,zdIZ)de---dzd, (43)
where ¢(z,,25,.-.,2, | z) denotes the density of the following conditional distribution:
d
(W, (1), W5(1), ..., W,(1)) given Y A,W,(1)=z. (44)

i=1
It is straightforward to observe that the conditional law of (44) follows a normal distribution with a mean vector
(Ay, A3, ..., A,)T7z and a covariance matrix

1—=AF —MA =Ny

—MA, 1A 0 =
3= (Eij)(dfl)x(d—l) =

—AAy Ay e 1=AF
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Thus, its moment generating function can be explicitly given by

-1
(S, Dy, V) = E[exp(z ﬁka(1)>

k=1

d
Z’\iWi(l) =Z:|
i=1

d—1 d
1
= exp(Z Nz + 3 > ﬁiﬁjzij) (45)
k=1 i, j=1
On the other hand, for a vector z := (z, z,,...,2,), the conditional expectation in the integrand of (43)

satisfies

E(r[ 5 (1)

Zd:)\iwi(l) =z, Wo(1) =25, ..., Wy(1) =Zd> = E(li[ g, ()| W) = Alz)v

where the matrix A is defined by

AL A, e Ay

o 1 --- 0
A=

o 0 --- 1

Provided that the conditional expectation (42) can be calculated as a multivariate polynomial in X, we assume

1
Q... i1)(/\‘z)zE(1‘[Jiw(1) W(1)=A1z>= S e(nyyny, oo )2 2
w=1

ny,ny, ..., ngeN
where c(n;, n,,...,n,) is the coefficient corresponding to the term z"'z5’. .. z,". Thus, it follows from (43)
that
n ng
P(i1,12 ..... il)(zl) = Z C("l’”z’--w”d)zn'f ]ZZZ"'Zd]¢(zz’z3""’Zd|z)d22"'dzd
nyng, ..., ng€N (225 - :2)ERM
= Yo ce(npng, ..o ng)Z"M(ny, ..., ny),

ny,ny, ..., ngeN

where M(n,,...,n,) is a cross moment defined by

Mo i E( W W0 WD)

i)\im(l)=z>. (46)

We note that a closed-form expression for (46) can be obtained from differentiating the moment generating
function (45), i.e.,

M P By )
n2, e e ey I’ld = 7 7 m, .

09,209, .. 99", 9=y =0
4.2. Calculation of (42). For any arbitrary indices i,, i, . . . , i;, we propose a general method for calculating

the conditional expectation (42). In the construction of diagonal expansion for heat kernel, Watanabe [74]
outlined the challenges in computing conditional expectation of the type (42). By discretizing stochastic integrals,
Uemura [73] showed that (42) has the structure of a polynomial in X = (x;, X, ..., x,) with some unknown
coefficients.

In addition to the iterated Stratonovich integral defined in (14), let

W= [ [ [ ) aw ) aw ) aw, ) “7)

be an iterated Itd integral with the right-continuous integrand f for an index i= (i;,...,i,) €{0,1,2,...,d}".
To lighten the notation, for f = 1, the integral L[1](¢) is abbreviated as I,(¢). Before discussing details, we
outline a brief description of a general algorithm for explicitly computing any arbitrary conditional expectation
of the type (42). It is noteworthy that this algorithm can be conveniently implemented using any symbolic

Ay
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package, e.g., Mathematica. In what follows, the iterated It integrals may involve not only stochastic integrals
with respect to Brownian motions in the Itd sense but also Lebesgue integrals with respect to time variables.

Algorithm 1

o Convert multiplication of Stratonovich integrals to a linear combination of iterated Stratonovich
integrals.

o Convert each iterated Stratonovich integral to a linear combination of iterated Ito integrals.

o Compute conditional expectation for each iterated Ito integrals.

4.2.1. Conversion from multiplications of Stratonovich integrals to linear combinations. In this subsec-
tion, we provide a simple recursive algorithm for converting any arbitrary multiplication of iterated Stratonovich
integrals to a linear combination. Let —i and i — denote the index obtained by deleting the first and the last com-
ponents of an arbitrary index i, respectively. According to Tocino [71], for a product of two iterated Stratonovich
integrals as defined in (14), it follows that

T30 = [ I ()0 W, (5)+ [ Vu(6Mp(s) o AW, 5) (48)

for any arbitrary indices @ = (a;, a,, ..., a,) and B = (B, B, ..., B,). lterative applications of this relation
render a linear combination form of J,(#)Js(7). For example, let @ = (a;, a,, a;) and B =(B,, B,), iterative
applications of (48) yield a linear combination form of J,(1)J(1) as

Jﬁ(l)JB(l) = J(alvabB]vBZvO‘S)(l) + J(“l»ﬁl»ﬁzvazvas)(l) + J(Bl»ﬁzﬂlyam%)(l) + J(Blvalyﬁz-az-%)(l)
T Jg1aras 2000 (D F ey by 0 o) (1) F e a1, (D) F ey 3,158 (1)
+ J(al,ﬁhazﬂsgﬁz)(]) + J(B],a],az,a_;,ﬁz)(l)'

Thus, iterated applications of the above algorithm yield a conversion from a multiplication of any number of
iterated Stratonovich integrals to a linear combination. Therefore, our immediate task is reduced to the calculation
of conditional expectation of iterated Stratonovich integrals.

4.2.2. Conversion from iterated Stratonovich integrals to Ité integrals. In this subsection, we briefly
adapt an algorithm proposed in Kloeden and Platen [46] for systematically converting an arbitrary iter-
ated Stratonovich integral to a linear combination of iterated It6 Integrals. For the index i = (i|,...,i,) €
{0,1,2,...,d}", its length is defined by [(i) := I((i;,...,i,)) = n. Let v denote the index with zero length,
i.e., [(v) =0. We also recall that W () :=t. According to p. 172 of Kloeden and Platen [46], the conversion
between iterated Stratonovich integrals defined in (14) and iterated 1t6 integrals defined in (47) can be achieved
via a recursive algorithm. For the case of /(i) =0 or 1, it is easy to have J;(¢) = I;(¢); for the case of /(i) > 2,
a general conversion scheme can be implemented via an iteration:

() =1, 1)) + 1{;’,:1'2#0}1(0)[%17(4)( : )](t) (49)
For instance, if /(i) =2, we have
() =1(1)+ %1{i1=i2;é0}1(0)(t)'

More explicitly, the conversion of Stratonovich integral J; iz)(l), for i;,i, € {1,2,...,d}, yields that

1 131 1 1
[ [ 1o aw, e aw, ()= [ W.()e aw, ()= [ W) dw, (1),
0 Jo 0 0
for i, #i,; Do 1 o 2
[ [ 1o aw,mye aw, t)= [ W, () aw, () +4 =W, (1),
0 Jo 0

for i, =1i,.
Now, with the conversion algorithm (49), we are able to express any arbitrary iterated Stratonovich integral
(in the linear combination converted from the multiplication [T, _, J;, (1)) as a linear combination of iterated Ito

integrals. Thus, our immediate task becomes the calculation of conditional expectation of iterated Itd integrals,
which will be intensively discussed in the following subsection.

i,
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4.2.3. A closed-form formula for conditional expectation of iterated Ito integrals. As the most chal-
lenging issue for completing our closed-form expansion, we propose a novel formula for calculating conditional
expectation of the following general form:

B W =x)=£( [ [ [ aw, ) aw e aw, 0)

for any arbitrary index i= (i}, i5,...,i,) €{0,1,2,...,d}" and vector x = (x, X5, ..., X,).

Our formula for the conditional expectation (50) is different from the existing results. For one-dimensional
Brownian motion, an explicit formula for conditional expectation of multiple Itd integrals with deterministic
integrands and without Lebesgue integrals on the time variable was introduced in Nualart et al. [S6] via Wiener-
chaos decomposition; see, e.g., chapter 1 in Nualart [55]. Takahashi et al. [66] adapted this result to the case with
iterated It6 integrals. To implement small-diffusion type asymptotic expansions, such a formula was applied and
generalized in order to incorporate multidimensional Brownian motions in, e.g., Yoshida [76, 77], Takahashi [61,
62, 63], Kunitomo and Takahashi [48, 49], Takahashi et al. [66, 67], and Shiraya et al. [60]. By converting
conditional expectations to unconditional ones via Hermite polynomials, an alternative ordinary-differential-
equation-based scheme for computing conditional expectations can be found in Takahashi et al. [66, 67], and
Takahashi and Toda [68].

PROPOSITION 3. For any arbitrary index i= (i, iy, ...,i,) with i}, 1,...,1,€{0,1,...,d}, we have

W(l):x), (50)

w0 @ n )
EL(1) [ W(1) =x] = iZ Y (st k'/zn[v(mu) k)( (”)] LG

k=0 k4=0

where n;(l) denotes the total number of l’s appearing in i, the function v is defined by

w6

if n is an even integer, and 0 otherwise.
ProoE. See Appendix B.

In particular, for d = 1,2, we illustrate the formula (51) via the following two examples. For d = 1 and
i1sips...,0,€{0,1}, we have

n;(1)
E[L() | W()=x]= Y i( DOk 2 (0 (1) — k, )( f))xh.

=0 1

For d =2 and i, i,,...,i,€{0,1,2}, we have

@) m(1)
EL(1) | W(1) =x] = Zzi< 1RO/ (1. 2) — k(1) — k)( (”)(”i(z))xf‘x?.

ky=0k = k2

5. Examples and computational results. To demonstrate the numerical performance of our method, this
section is devoted to examples and computational results. In §5.1, we employ the valuation of European options
under various constant elasticity of variance type models (see Cox [16]) to illustrate the efficiency of our
expansion. In §5.2, we apply our expansion to the valuation of options on VIX, which is a challenging issue
in financial engineering because of the complexity of VIX dynamics implied by that of the stochastic variance.
Without loss of generality, we employ the GARCH diffusion (see, e.g., Christoffersen et al. [14]) and its
multifactor generalization to the Gatheral double lognormal stochastic volatility (hereafter DLN-SV) model (see,
e.g., Gatheral [27]) as two examples to illustrate the applicability of our method to analytically intractable
non-Lévy and non-affine models.

In each example, we begin by systematically nesting the specific model into the general framework proposed
in §2 in order to symbolically implement the closed-form expansion via the general formulas (40) and (36).
To limit the length of the paper, we will not include the closed-form expansion formulas, which will be provided
in the form of Mathematica notebook upon request. The symbolic computation of asymptotic expansions are
implemented in Mathematica; the numerical valuation of the benchmark values (including analytical pricing
formulas for CEV type models and Monte Carlo simulations for the GARCH diffusion and DLN-SV models)
are programmed in MATLAB. All the numerical experiments are conducted on a laptop PC with an Intel(R)
Pentium(R) M 1.73 GHz processor and 2 GB of RAM running Windows XP Professional.

Ay
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5.1. Illustrations from valuation of European options under CEV type models. The CEV type models
offer a simple but flexible method for capturing the randomness in volatility, the leverage effect, and even credit
risk; see, e.g., Cox [16], Davydov and Linetsky [19], Andersen and Brotherton-Ratcliffe [3], as well as Carr and
Linetsky [10]. We assume that the risk-neutral dynamics of an underlying asset is given by the following SDE:

ds(t) =rS(t)dt +8S(t)P™ daw (1), S(0)=s,>0, (52)

for some constants r, §, and 8. By flexible choices of 8, which controls the relation between the underlying price
and its volatility, the specification of (52) nests a number of celebrated models, e.g., the Black-Scholes model
obtained from 8 = 0 (see Black and Scholes [6] and Merton [53]), the Cox-Ingersoll-Ross (CIR) model obtained
from B = —1/2 (see Cox et al. [17]), and the absolute process obtained from 8= —1 (see Cox [16] and Davydov
and Linetsky [19]). Various alternative methods for approximating option price and implied volatility under the
CEV type (or even more general local volatility) models can be found in, e.g., Hagan and Woodward [34],
chapter 10 of Lipton [50], chapter 5 of Henry-Labordere [35], Gobet et al. [30], and Gatheral et al. [28].
Based on the analytical tractability of CEV type models, we employ the closed-form formulas for option
valuation (see, e.g., Cox [16], Schroder [59], and Davydov and Linetsky [19]) to generate benchmark true values
and thus numerically validate our expansions. According to the setting given in (3), it is straightforward to
obtain closed-form expansions via (36) and (40). In Table 1, we report the computational results for comparing
the fourth and eighth order expansions with the benchmark true values for the maturities 7 =1 and 2 and the
strikes K = 80, 90, 100, 110, and 120 for four choices of 3, i.e., 3 =0, —1/4, —1/2, and —1. The asymptotic
refers to the expansion approximations. The error is calculated by the difference between the expansion and the
true value. It is evident that the accuracy of the expansions can be obtained at a relatively small order (the fourth
in this case) and improved as the order increases. To further demonstrate the performance and robustness of our

expansion, we plot the uniform absolute errors for a relatively wide range of strikes K € {80, 81, ..., 120} and
for maturities 7 =1 and 2 in Figure 1. The Jth order uniform error is calculated from
o). _y»
e Ke{so,rs?le,l.x..,lzo} V(©) = VO

As seen from Figure 1, the increase of orders results in the decrease of uniform errors. This suggests that better
numerical accuracy can be attained by higher order expansions, which will become increasingly feasible to
obtain because of rapid improvement in computing technology. We note that Assumption 2 is violated for some
model specifications (8 = —1/4 and —1/2). However, the computational results suggest the wide applicability
of our expansion method beyond the theoretical assumptions.

Moreover, in Figure 2, we demonstrate the efficiency of our method by comparing the average uniform abso-
lute error for pricing options with maturity 7 = 1 over the strikes from {80, 81, ..., 120} and the corresponding
computing time with those resulting from Monte Carlo simulation methods. For simulations, on the one hand, we
employ an exact simulation method by sampling the noncentral chi-square distributions; see, e.g., chapter 3 in
Glasserman [29]; on the other hand, we employ the Euler discretization; see, e.g., chapter 6 in Glasserman [29].
Note that the latter strategy sheds light on the cases where exact simulation is impractical or impossible and
discretization is inevitable. The comparisons suggest that our expansions significantly outperform both of these
two commonly used Monte Carlo simulation methods.

Before closing this section, we compare the performance of our expansion with those of Hagan and
Woodward [34], Henry-Labordere [35], Gobet et al. [30], and Gatheral et al. [28]. In Table 2, we report what
orders in our expansion are required to obtain comparable accuracy in terms of the Black-Scholes implied
volatility. For our expansion, the error in implied volatility is calculated from the difference between the implied
volatility of our expansion value and that of the benchmark value given by the closed-form formula; see, e.g.,
Cox [16] and Schroder [59]. For the alternative methods, the error is calculated from the difference between the
implied volatility expansion and the implied volatility of the benchmark value. The errors of the two selected
(the second and the fourth) orders of our expansion either sandwich or exhibit magnitudes similar to those of
the aforementioned alternative methods (with negligible differences).

5.2. Applications in valuation of options on VIX. VIX (the S&P500 implied volatility index; see
CBOE [12]) measures market expectations of near term (next 30 calendar days) volatility conveyed by index
option prices. Since volatility often signifies financial turmoil, VIX is often referred to as the “investor fear
gauge.” Options on VIX have become major risk management tools. As important hedging instruments, call
options on VIX are often used to manage downside risk. In particular, through rolling options on VIX with
one-month maturity, VXTH (the VIX tail hedge; see CBOE [13]) proposed by CBOE has shown its indispens-
able role as a powerful hedging tool for protecting portfolios against tail risk. In this section, we apply our
asymptotic expansion method to the valuation of options on VIX.

i,
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TaBLE 1. Numerical performance for the CEV models.
Parameters Benchmark 4th order expansion 8th order expansion
T K True value Asymptotic Error Asymptotic Error
B=0
1 80 24.14718964 24.14693216 2.57x 107 24.14718963 1.25x 107*
90 16.97187578 16.97163582 2.40 x 107 16.97187577 1.06 x 107#
100 11.34847683 11.34823719 2.40 x 107 11.34847681 1.06 x 107*
110 7.25577635 7.25553699 2.40 x 107 7.25577634 1.06 x 1078
120 4.46330171 4.46307640 2.25x 107 4.46330170 8.89 x 107°
2 80 28.30846514 28.30650378 1.96 x 1073 28.30846479 3.49x 1077
90 21.95705499 21.95511675 1.94 x 1073 21.95705465 3.40 x 1077
100 16.72842463 16.72648665 1.94 x 1073 16.72842430 3.40 x 1077
110 12.55715618 12.55521841 1.94 x 1073 12.557155840 3.40 x 1077
120 9.31369441 9.31177426 1.92 x 1073 9.31369407 3.33x 1077
B=-1/4
1 80 24.29700872 24.29676550 2.43x 107 24.29700871 1.08 x 107*
90 17.07894600 17.07870793 2.38x 107 17.07894599 1.06 x 107*
100 11.35005220 11.34981264 2.40 x 107 11.35005219 1.06 x 107*
110 7.14025331 7.14001225 241 x107* 7.14025330 1.06 x 107*
120 4.26509695 4.26485927 2.38x 107 4.26509694 1.02x 107*
2 80 28.55925556 28.55733393 1.92 x 1073 28.55925521 3.54 x 1077
90 22.11232682 22.11039699 1.93 x 1073 22.11232648 3.40 x 1077
100 16.73274849 16.73081135 1.94 x 1073 16.73274815 3.40 x 1077
110 12.39509455 12.39315000 1.95x 1073 12.39509421 3.39x 1077
120 9.00454690 9.00259377 1.95x 1073 9.00454669 3.06 x 1077
B=-1/2
1 80 24.45553812 24.45533260 2.06 x 107* 24.45553812 4.97 x 107°
90 17.19001023 17.18978314 2.27x 107 17.19001022 7.42 x107°
100 11.35480260 11.35456392 2.39x 107 11.35480259 1.01 x 107#
110 7.02893190 7.02868214 2.50 x 107 7.02893189 1.24 x 107*
120 4.07439179 4.07412303 2.69 x 107* 4.07439177 2.08 x 107#
2 80 28.82489615 28.82312246 1.77 x 1073 28.82489602 1.34 x 1077
90 22.27702410 22.27515601 1.87 x 1073 22.27702383 2.66 x 1077
100 16.74584949 16.74392228 1.93 x 1073 16.74584917 3.20 x 1077
110 12.24351006 12.24152619 1.98 x 1073 12.24350970 3.64 x 1077
120 8.70980382 8.70773767 2.07x 1073 8.70980337 4.47 x 1077
B=-1

1 80 24.80176688 24.80158145 1.86 x 107 24.80176686 1.72 x 107%
90 17.42594029 17.42571707 2.23x 107 17.42594028 1.21 x107*
100 11.37418604 11.37394286 243 x 107 11.37418603 1.07x 107*
110 6.81790584 6.81764162 2.64 x 107 6.81790583 9.33 x 107
120 3.71352164 3.71321232 3.09 x 107 3.71352164 3.53x107°
2 80 29.41089763 29.40917823 1.72 x 1073 29.41089821 5.83 x 1077
90 22.64091260 22.63903080 1.88 x 1073 22.64091245 1.51x 1077
100 16.80039525 16.79841820 1.98 x 1073 16.80039494 3.02x 1077
110 11.96994656 11.96787000 2.08 x 1073 11.96994625 3.15%x 1077
120 8.15849610 8.15623031 2.27x 1073 8.15849585 2.51x 1077

Note. Parameters: s, = 100, r =0.03, and 0 = 855 =0.25.

5.2.1. Modeling for VIX. According to CBOE [12], regardless of model specifications, VIX is defined
by averaging the weighted prices of out-of-the-money put and call options on S&P500 with 30-day maturity.
Suppose the risk-neutral dynamics of an asset is given by

dS(t)=rS(t)dt+/V(t)S(t) dW(t),

(53)

where {W(¢)} is a standard Brownian motion; r is the risk-free rate; the process {V(¢)} models the stochastic
variance. Based on the realized variance over the time interval [z, r + AT] defined by

L

1
RV(t,t+AT) = E./.
t

t+AT

V(s)ds,
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FIGURE 1. Uniform errors of the expansions for the CEV models.

where AT corresponds to the 30-day maturity of the out-of-the-money options employed for constructing VIX,
a theoretical squared VIX for modeling and pricing of derivatives on VIX (see Carr and Wu [11]) is defined by

VIX (1) = E[RV(1, t + AT) | F (1)] = % / M EW() | F (1) ds, (54)

where the expectations are taken under the risk-neutral measure and {F (¢), r > 0} denotes the filtration generated
by the process {V(1)}.

The literature has witnessed various models for pricing options on VIX or related volatility derivatives. Similar
to the Black-Scholes model for pricing equity and index options, Whaley [75] regarded VIX as a geometric
Brownian motion with constant volatility. Grunbichler and Longstaff [32] specified the dynamics of VIX as a
mean-reverting square-root process. Detemple and Osakwe [20] employed a logarithmic mean-reverting process
for pricing options on volatility. Carr and Lee [9] proposed a model-free approach by using the associated
variance and volatility swap rates as model inputs. Cont and Kokholm [15] studied a modeling framework
for the joint dynamics of an index and a set of forward variance swap rates. In this paper, we will directly
model the stochastic variance process {V ()} in the asset dynamics (53) using the GARCH diffusion (see, e.g.,
Christoffersen et al. [14]) as well as its multifactor generalization to the Gatheral double lognormal stochastic
volatility (DLN-SV) model (see, e.g., Gatheral [27]) and price options on VIX based on the theoretical proxy
of VIX defined by (54).

5.2.2. Valuation of options on VIX under the GARCH diffusion model. In this subsection, we apply our
expansion method to the valuation of options on VIX under the GARCH diffusion stochastic volatility model.
According to Christoffersen et al. [14], the risk-neutral dynamics for the model is specified as follows.

Model 1. The GARCH diffusion stochastic volatility model is governed by

AV (1) = 32(0 — V(1)) dt + V() dW(t),  V(0)=uv,> 0, (55)

where 3, 0 and o are positive constants; {W(t)} is a standard Brownian motion.

IR
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&
— TaBLE 2. Comparisons with alternative methods.
(o]
N
g' Parameters Alternative methods 2nd order expansion 4th order expansion
AN
= K (% Error in implied volatility Error in implied volatility Error in implied volatility
Py
o]
=X Comparison with the 3rd order approximation formula (2.6) in Gobet et al. [30]
S -0.2 80 —1.6x107° —1.6x107* —2.0x107°
= 100 —6.0x107° -3.2x107° —-1.0x 107
o 120 1.0x 107° 6.0x 1073 —8.7x 1077
= Comparison with the 3rd order approximation formula (2.9) in Gobet et al. [30]
5 —0.8 80 47x10 48x107 1.2x107
= 100 1.2x107* 1.2x107* 3.0x 1073
B 120 —8.4x107° —8.0x 1073 —8.6x107°
-g Comparison with the approximation formula (7) in Hagan and Woodward [34]
= —0.5 80 7.2x107° 2.8x107* 1.7x107°
% 100 6.2x107° 53x107° 3.2x10°°
a 120 4.4x107 —9.5x 1073 —54x107°
Comparison with the approximation formula (5.41) in Henry-Labordere [35]
—0.5 80 7.8x 1073 2.8x107* 1.7x 1073
100 6.2x107° 53%x107° 3.2x107°
120 4.6x 1073 —-9.5x 1073 —5.4x107°
Comparison with the approximation formula given in §3 of Gatheral et al. [28]
—0.5 80 1.1x1073 2.8x107* 1.7x1073
100 6.7x107° 53x1073 3.2x107°
120 5.0x107° -9.5x 1073 —5.4x107°

Note. Parameters: s,=1, T=10, r=0, and 6§ =0.2.
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In the SDE (55), we employ 3¢ for the speed of mean reversion, 6 for the long-term level, o for the
volatility of variance. Nelson [54] showed that, under the GARCH diffusion model, discrete time log returns
follow a GARCH(1, 1) process of Engle and Bollerslev [24], which is popular for modeling stochastic volatility
and has shown outstanding empirical performance. We note that the GARCH diffusion specification is also
employed for constructing the A-SABR model in Henry-Labordeére [35]. According to the classification in Dai
and Singleton [18], the model (55) belongs to the non-affine class, which is usually regarded to be analytically
intractable and computationally challenging.

By explicitly solving E(V (s) | #(t)) from the fact that

E(V(t+AT) = V(1) | F (1)) = z/tw(e —E(V(s)

F (1)) ds,

and recalling the definition of the squared VIX in (54), we express the VIX under model (55) as a linear
combination of the instantaneous variance V(¢) and the long-term level 6 in the following lemma.

LEMMA 3. Under the GARCH diffusion stochastic volatility model (55), the VIX defined by (54) admits the

following representation:
VIX(t) =+/a,V(t)+ a,0, (56)

where the coefficients are given by

11— e #AT J 1 1 1 —e AT 57)
“= AT » ’ an = AT » ’
Thus, the price for a call option on VIX with maturity 7 and strike k (expressed in percentage) can be
represented by risk-neutral expectation of the discounted payoff, i.e.,

cy=e"TE(VIX(T) —k)* = e TE(/a,V(T) + a0 — k). (58)

According to the convention proposed in CBOE [12], the price per share is given by C, =100 x c,. To apply
our general expansion formulas (36) and (40), we identify V(¢) as the underlying model X(¢) proposed in (1).
According to Lemma 3, the function for constructing VIX from X(¢) is given by f(x) = \/a,;x + a,0. Thus,
following the procedures proposed in (6), (7) and (9), we obtain the following nonlinear SDE for Y¢(r) =
FX(1)):

dY*(1) = €a(Y*(1)dt +eB(Y (1) 0o dW(r),  Y*(0) =yo= (o), (59)

where
©(0—x*) o*(x’—a,0) ad  Blx)= o(x* — a20)'
2x 4x 2x

Thus, (58) can be expressed as ¢, = e TE[(Y¢(1) — k)™]. We note that the drift and volatility functions (60)
both exhibit nonlinearity, which poses significant challenge on the valuation. However, such difficulty can be
circumvented by our expansion.

In numerical experiments, we select a set of parameters from Barone-Adesi et al. [5]. Accordingly, the initial
value for VIX is calculated as VIX(0) =./a,V(0) + a,0 = 0.3. To provide benchmark values for comparison,
we simulate the path of {V (¢)} using Euler discretization. Thus, the initial value of an option on VIX is simulated
by averaging a large number of trials, which is assumed to be the square of the number of discretization steps
according to the optimal rule for allocating computational resources suggested by Duffie and Glynn [21].

As listed from the Chicago Board Options Exchange, traded options on VIX usually have relatively small
maturities. The longest maturities are less than or equal to six months; and the large trading volumes are
usually associated with options with small maturities, e.g., front-month options. Our numerical experiments target
options with maturities ranging from one month to six months and strikes corresponding to various moneyness.
In Table 3, computational results from the simulations as well as expansions of the fourth and the ninth orders are
exhibited. The accuracy of the expansions can be seen from the fact that all values of the ninth order expansions
lie in the 95% confidence intervals of the simulated benchmark values. In Figure 3, we plot the absolute errors
of our expansions with three different orders for the four representative maturities listed in Table 3. As seen from

a(x) = (60)

Ay
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TaBLE 3. Numerical performance for pricing options on VIX under the GARCH diffusion model.

Parameters Simulation 4th order expansion 9th order expansion

T K Mean Std. err. Asymptotic Discrepancy Asymptotic Discrepancy

1/12 25 0.048792  5.75x 107° 0.048776 1.65 x 10~ 0.048749 433 x107°
26 0.039403 5.58 x 1073 0.039378 2.44 x107° 0.039359 4.37x107°
27 0.030616  5.27 x 1073 0.030623 7.18 x 1076 0.030607 9.08 x 107¢
28 0.022806  4.80 x 1073 0.022828 2.26 x 107° 0.022813 7.28 x 107¢
29 0.016269 423 x107° 0.016254 1.50 x 10~° 0.016238 3.13x107°
30 0.011018 3.59x 1073 0.011032 1.45x 1073 0.011016 1.80 x 107¢
31 0.007115 2.93 x 107° 0.007135 2.06 x 10~ 0.007118 2.96 x 107¢
32 0.004387 229 x107° 0.004402 1.56 x 1073 0.004384 2.69 x 107¢
33 0.002595 1.77 x 10~° 0.002596 1.60 x 107° 0.002578 1.67 x 107
34 0.001469 1.31 x 1073 0.001466 2.89 x 107° 0.001449 2.00x 107

2/12 25 0.048592  7.29 x 1073 0.048654 6.14 x 107° 0.048490 1.02 x 107
26 0.039778 6.98 x 10~° 0.039927 4.41x107° 0.039795 8.53 x 107°
27 0.031879 6.56 x 107° 0.031997 1.49x 107* 0.031926 1.73x 1073
28 0.024824  6.03 x 107° 0.025011 1.88 x 107 0.024881 5.81 x 107
29 0.018866  5.40 x 1073 0.019065 1.99 x 107* 0.018933 6.71 x 107
30 0.014022  4.77 x 1073 0.014181 1.59 x 10~ 0.014048 2.57 x 1077
31 0.010184  4.12x 107 0.010305 1.21x 107* 0.010169 1.51x 107
32 0.007196 3.49 x 107° 0.007330 1.34 x 10~ 0.007191 4.56 x 107¢
33 0.004961 2.89 x 107° 0.005116 1.55x 107 0.004973 1.15x 107
34 0.003359 2.37 x 107° 0.003514 1.55 x 10~ 0.003369 9.89 x 107¢

3/12 25 0.048323 8.14 x 1073 0.048865 5.42x 107 0.048404 8.04 x 1073
26 0.040009 7.77 x 107° 0.040565 5.56 x 107* 0.040127 1.19 x 107
27 0.032622  7.32x 1073 0.033073 451 x 10 0.032642 1.94 x 1073
28 0.026041 6.75 x 107° 0.026489 4.48 x 107 0.026050 9.33 x 107¢
29 0.020459 6.15x107° 0.020853 3.94 x 1074 0.020409 4.96 x 1073
30 0.015672  5.49 x 1073 0.016157 4.85x 107 0.015709 3.69x 1073
31 0.011939 4.87 x107° 0.012343 4.04 x 10~ 0.011889 5.08 x 1073
32 0.008974  4.27x 1073 0.009320 3.45%x 1074 0.008856 1.18 x 107
33 0.006512 3.64 x 1073 0.006974 4.63 x 10 0.006502 1.01 x 1073
34 0.004724 3.11x107° 0.005191 4.67x 107 0.004710 1.40 x 1073

6/12 25 0.048042 1.85x 107* 0.051545 3.57x 1073 0.047901 1.79 x 107
26 0.040342 1.77 x 107* 0.043774 3.32x 1073 0.040201 2.52x 107
27 0.033432 1.67 x 107* 0.036841 3.35x 1073 0.033290 1.99 x 10
28 0.027364 1.56 x 107* 0.030769 3.26 x 1073 0.027218 297 x 107
29 0.022140 1.43 x 107* 0.025552 3.47x 1073 0.021991 9.26 x 107°
30 0.017728 1.31x 107* 0.021149 3.34x 1073 0.017573 2.34x 107
31 0.014063 1.18 x 107* 0.017500 3.38x 1073 0.013903 2.17 x 107
32 0.011065 1.06 x 107* 0.014524 3.38x 1073 0.010898 1.61 x 107*
33 0.008640  9.45x 1073 0.012135 3.48 x 1073 0.008472 1.83 x 107
34 0.006692 8.37 x 1073 0.010241 3.53x 1073 0.006535 1.71 x 107*

Note. Parameters: » =2, § =0.09, 0 =0.8, v, =0.09, and r = 0.03. Std. err.: standard error. Discrepancy:
Asymptotic-Mean.

Table 3 and Figure 3, the decrease of discrepancies between the simulated benchmark value and the asymptotic
expansion value resulting from the increase of orders of expansion suggests the indispensable role of high-order
expansions.

5.2.3. Valuation of options on VIX under the Gatheral double lognormal stochastic volatility model.
Similar to the previous application, we consider an extension of the GARCH diffusion model to a multifactor
stochastic volatility model as follows.

Model 2. The Gatheral double log-normal stochastic volatility (DLN-SV) model is governed by

dv(t)y=k(V'(t) =V (2))dt+ & V(2) dW, (1), V(0) =v, >0, (61)
dV'(t) =k (9 = V'(1))dt + &V (1) [p dW (1) + /1 — p> dW, ()], V'(0) =v, >0,
where —1 <p <1; k >k >0; &, & and ¥ > 0; {W,(t), W,(1)} is a standard two-dimensional Brownian

motion.

L
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FIGURE 3. Absolute errors of the expansions for the GARCH diffusion model.

Initiated by Gatheral [27], Model 2 can be regarded as a generalization of Model 1 by allowing an additional
freedom in the sense that the instantaneous variance V() reverts to a moving intermediate level V'(¢) at rate «,
while V'(¢) reverts to the long-term level ¢ at a slower rate «’ < k. For various purposes, alternative multifactor
stochastic volatility models have been proposed in, e.g., Duffie et al. [22], Buehler [8], Egloff et al. [23], Kaeck
and Alexander [41], and Ait-Sahalia et al. [2]. Similar to the GARCH diffusion model, the DLN-SV model falls
into the non-affine class.

By explicitly solving E(V(s) | 7 (¢)) and E(V'(s) | #(¢)) from the fact that

EVG+AT) | F0) -V =x [ (EV6)F0) =BV 7)) ds

t+AT
E(V'(t+AT) | F(¢)) — V'(t) = K OAT — K// E(V'(s)| 7 (t))ds,
t
we obtain an explicit representation of VIX using a linear combination of the instantaneous variance V (), the
intermediate level V'(¢), and the long-term level ¥ in the following lemma.

LEMMA 4. Under the Gatheral DLN-SV model (61), the VIX defined by (54) admits the following
representation:

VIX(1) = /b, V() 5,V () + ;9. ()
where the coefficients are given by
1 1—e T
by=— —--—, 63
1= A7 p (63)
1 K 1 — e WAT | _ o kAT

by=—" . — , 64
TTAT k—« < 4 K ) (64)

1 1— —KkAT 1 1— —Kk'AT 1— —KAT
TR N B WL Y S S )

AT K AT k—« K’ K
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TABLE 4. Numerical performance for pricing options on VIX under the DLN-SV model.

Parameters Simulation 3rd order expansion 6th order expansion

T K Mean Std. err. Asymptotic Discrepancy Asymptotic Discrepancy
1/52 8 0.043911 3.24 x 107° 0.043994 8.34 x 107° 0.043943 3.28 x 107
9 0.033957  3.23x 107 0.033999 4.20x107° 0.033976 1.91 x 107

10 0.024173 3.17x 1073 0.024155 1.80 x 1073 0.024171 1.45x10°¢

11 0.015298  2.90 x 1073 0.015246 521 %107 0.015274 2.44x107°

12 0.008402  2.37x 107 0.008381 2.08 x 107° 0.008407 5.51 x107¢

13 0.004056 1.73 x 107 0.040170 3.89x 107 0.004044 1.19x 1073

14 0.001726 1.14 x 1073 0.001700 2.54x 1073 0.001729 3.47x10°¢

15 0.000667  7.10 x 107¢ 0.000650 1.73 x 107 0.006732 6.04 x 107¢

16 0.000242 420 x 107¢ 0.000240 2.02x107¢ 0.000247 5.19x 107¢

17 0.000083 2.36 x 107¢ 0.000092 8.90 x 107¢ 0.000086 3.09 x 107¢

2/52 8 0.045213  4.41x107° 0.045338 1.25 x 107 0.045218 5.18x10°¢
9 0.035326  4.38 x 1073 0.035440 443 x107° 0.035318 8.57 x 107°

10 0.025829  4.24x 1073 0.025927 8.81x 107 0.025875 4.57x107°

11 0.017635 3.87 x 107 0.017653 1.63 x 107* 0.017610 2.56 x 1073

12 0.011162  3.31x107° 0.011219 1.18 x 107# 0.011178 1.53x 1073

13 0.006681 2.69 x 107 0.006722 1.35x 107 0.006680 2.59 x 1077

14 0.003813 2.07x107° 0.003845 1.53 x 107 0.003800 1.27x 1073

15 0.002090 1.54 x 107 0.002117 1.52x 107 0.002085 4.27 x 107°

16 0.001089 1.13x 107 0.000990 9.90 x 1073 0.001077 1.15x 107

17 0.000542  8.20x 107¢ 0.000524 1.79 x 1073 0.000549 7.60 x 107¢

3/52 8 0.046746  5.33x 1073 0.046658 8.82 x 1073 0.046662 8.40 x 1073
9 0.036806  5.27 x 1073 0.036550 2.55x 107 0.036781 243 x107°

10 0.027602  5.07 x 1073 0.027241 3.61 x 107* 0.027624 2.13x107°

11 0.019723  4.68 x 1073 0.019309 4.14 x 107 0.019688 3.53x107°

12 0.013479  4.13x 1073 0.013066 413 x 107 0.013452 434 x 1073

13 0.008896  3.52x 107° 0.008481 4.19 x 107 0.008853 472 x107°

14 0.005684  2.89 x 1073 0.005290 3.94 x 107 0.005673 1.18 x 1073

15 0.003598  2.33x107° 0.003159 439 x 107 0.003553 4.57x107°

16 0.002246 1.90 x 1073 0.001805 4.41 x 107 0.002230 1.56 x 1073

17 0.001294 1.50x 1073 0.001016 2.78 x 107# 0.001274 2.00x 1073

1/12 8 0.047775 7.93 x 1073 0.047590 1.58 x 107 0.047730 1.67 x 1073
9 0.038101 7.86 x 1073 0.037438 6.63 x 107 0.038063 3.82x107°

10 0.028960  7.63 x 1073 0.028238 7.23 x 107 0.028915 4.55x 1073

11 0.021208  7.25x 1073 0.020447 7.61 x 107 0.021121 8.68 x 1073

12 0.014986  6.67 x 1073 0.014264 7.22 x 107 0.014924 6.21 x 1073

13 0.010356  6.07 x 1073 0.009616 7.39 x 107 0.010279 7.69 x 1073

14 0.007028  5.96 x 1073 0.006258 7.70 x 107 0.006945 8.27x 1073

15 0.004652  5.90 x 1073 0.003900 7.53 x 107* 0.004609 432x107°

16 0.003153 5.85x107° 0.002298 8.55x 107* 0.003048 1.04 x 10

17 0.002144  5.72x 1073 0.001282 8.62x 107* 0.002034 1.09 x 107*

Note. Parameters: k =5.5, §, =2.6, v, =0.0137, k¥ =0.1, 9 =0.078, &, =0.44, v, =0.0208, p =0.57, and
r=0.04. Std. err.: standard error. Discrepancy: Asymptotic-Mean.

Thus, the price of a call option on VIX with maturity 7 and strike k£ can be represented as

co=e"TE(Vb V(1) +b,V' (1) + by — k). (66)

To apply the general formulas (40) and (36) for expansion, we identify (V(z), V'(¢)) as a two-dimensional
general model X (7) = (X,(¢), X,(¢)) as proposed in (1). The function for constructing the VIX (62) from X(z)

is given by f(x|, x,) = /b;x; + byx, + by9. Thus, following the procedures proposed in (6), (7) and (9), we
obtain the following nonlinear SDE for Y¢(t) = (Y, (¢), Y5 (¢)) with Y(¢) = f(X{(2), X5(¢)) and Y (¢) = X5(¢):

dY*(t) = €a(Y*(1) dt +eB(Y(1) 0 dW(r),  Y(0) =yo= [ (o),
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FIGURE 4. Absolute errors of the expansions for the Gatheral DLN-SV model.
and

1 1
g[fl (X} — byxy — by ) + pé, by, ] Y 1 —p2&:byx,
1 1

péx, \/1——132 &%,
Thus, (58) can be expressed as ¢, =e"TE[(Y{ (1) —k)*].

Owing to the highly volatile feature of VIX, the front-month (maturity less then or equal to one month)
options on VIX have been widely used as important and effective hedging tools. For instance, by rolling
one-month VIX options, VXTH (VIX tail hedge strategy) proposed in CBOE [13] has shown satisfactory
performance for managing portfolio downside risk. Accordingly, we illustrate the applicability of our expansion
in the valuation of options on VIX with relatively small maturities. In the numerical experiments, we employ
the set of parameters given in Gatheral [27]. Accordingly, the initial value for VIX is calculated as VIX (0) =
Vb, V(0) +b,V'(0) + by = 0.1226. To provide benchmark values for comparison, we simulate the path of
{(V(¢), V'(¢))} using Euler discretization. In Table 4, computational results for the simulated values as well as
the third and the sixth orders of our expansions are exhibited. The accuracy of the expansion can be seen from
the fact that all the sixth order expansion values lie in the 95% confidence intervals of the simulated benchmark
values. In Figure 4, we plot the absolute errors of our expansions with different orders for the four representative
maturities listed in Table 4. As seen from Table 4 and Figure 4, the decrease of discrepancies between the
simulated benchmark value and the asymptotic expansion value resulting from the increase of expansion orders
suggests the applicability of our method. In particular, for valuation of options on VIX with longer maturities,
we could seek for desirable accuracy by implementing higher-order expansions.

B(x)=B((x), x,)) =

6. Concluding remarks. Enlightened by the theory of Watanabe [74] for analyzing generalized random
variables and its further development in Yoshida [76], Takahashi [61, 62] as well as Kunitomo and Takahashi
[48, 49] etc., we focus on a wide range of multivariate diffusion models and propose a general probabilistic
method of small-time asymptotic expansions for approximating option price in simple closed-form up to an

NN )
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arbitrary order. To explicitly construct correction terms, we introduce an efficient algorithm and novel closed-
form formulas for calculating conditional expectation of multiplication of iterated stochastic integrals, which
are potentially useful in a wider range of topics in applied probability and stochastic modeling for operations
research. The performance of our method is illustrated through various models nested in the CEV type processes.
With an application in pricing options on VIX under the GARCH diffusion and its multifactor generalization to
the Gatheral double lognormal stochastic volatility models, we demonstrate the versatility of our method in deal-
ing with analytically intractable non-Lévy and non-affine models. The robustness of the method is theoretically
supported by justifying uniform convergence of the expansion over the whole set of parameters.

In summary, our method may become a convenient and efficient tool for option valuation under a wide range
of diffusion models with flexible specification. In particular, because of the fast development of computing
technology in terms of speed and storage capacity, symbolic implementation of high-order expansions will
become increasingly more feasible and will thus render desirable accuracy for various purposes.

Acknowledgments. The author is grateful to Professors Jim Dai (editor) and Masakiyo Miyazawa (area
editor), an associate editor, and two anonymous referees for their extensive and constructive comments. This
research was supported by the Guanghua School of Management, the Center for Statistical Sciences, and the Key
Laboratory of Mathematical Economics and Quantitative Finance (Ministry of Education) at Peking University,
as well as the National Natural Science Foundation of China [Grant 11201009].

Appendix A. Proofs for Section 3

A.1. Proof of Proposition 1.
Proor. Indeed, we have

1 (T
Q@)= X —'E( = (zo)zrlzrz...z,.”)

(n.x(me;

=E({Z,>7)Z,) + > l'E((S("—”(ZO—z)Z,IZ,Z...z,). (A1)

n
n=2, (n,r(n))eR;,

We deduce that
E1(Zy 2320 = [ E(1Zo22)2,1 2= )90 dx = | E(Z, | Zy=0)$(x) dx,
where the integrand can be further explicitly calculated as
E(Zi | Zy=x) = D(Y)E(Yis1,1 | Zog=x)

=D()’0)E< Z Ci,l()’o)Ji(l)‘Zozx>=D(yo) Z Ci,l(yO)E(‘Ii(l)|B(l)=x)'

li]|=k+1 Jlil|=k+1

Thus, we obtain that

E({Zy=2}Z,)=D(y)) > Ci,l(yo)fooE(Ji(l)IB(1)=X)¢(x)dx=D(yo) 2 G0 I (Py)(2).  (A2)

[li]l=k+1 [lil|=k+1

On the other hand, by the integration-by-parts formula involving the Dirac delta function ( see, e.g., section 2.6
in Kanwal [42]) we deduce that,

E(®"(2,-2)2,2,,...2,) = / 8" (x=2)E(Z,Z,,. .. Z, | Zy=x)db(x) dx

00 9(n=2)
— (1) /ﬂo S(r=2)5—5E(Z,2,... 2,1 2y =0)(x)] dx
9(n=2)
= (—1)"72W[E(Zrl Z, - Z, 1 Zy=2)¢()],

Ay
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where the conditional expectation is calculated as

E(Z.Z,...Z, |Zy=2) =D)"E(Y, 11 Y- Y, 111 Zg=2)

- D(yO)nE(f[l H'H*X:

Ci,l()’o)Ji(l) ‘ Zy= Z)

= D(y)"

> (I ciw,l(yo>>E((ﬁlﬁw<1)) ‘B(n =)

i [|=r,+1, Nw=1
w=1,2,..., n

Using the differential operator (31), we obtain that

(n—2) .
(;Zn—Z (E(Z,Z,,...Z, | Zy=2)p(2)] = D(y,)" ) (H Ciu,,l()’o)>@”2(P(i]’i2 _____ i) (2)d(2). (A3)
ligll=ry+1, “w=1
w=1,2,..., n

Thus, the formula (36) follows from plugging (A2) and (A3) into (Al). O

A.2. Proof of Proposition 2. Without loss of generality and in order to simplify the notations, we consider
the case of f(x)= x, in which the transform in (9) becomes an identity and the dynamics (7) and (10) coincide
with each other, i.e.,

X (t)=Y(v), and

o(x) =B(x).

For general specifications of f(x) satisfying Assumption 3, the proof follows from a straightforward adaption
of the following arguments. For simplicity, we avoid such notational complication.

Based on Assumption 2, we introduce the following uniform upper bounds. For k > 1, let u; and o, be the
uniform upper bounds of the kth order derivative of u and o, respectively, i.e.,

Xo = Yo» p(x) = a(x),

[0®u(x; 0)/0x*| <pm,  and 0P 0 (x; 0) /x| < 0, (A4)

for (x, ) € R™ x O. Also, for any arbitrary x,, let u, and o, denote the uniform upper bounds of |u(x,; 0)]
and |0 (x,; )] on 0 € O, respectively, i.e.,

[1(xo; ) <po  and o (xo; 0)] < 0y, (AS)

for any 6 € ©. To establish the uniform convergence rate in Proposition 2, we introduce the following lemma.
When the dependence of parameters is emphasized, we express Y<(1) as Y¢(1;0,y,) and express the stan-
dardized random variable Z¢ defined in (21) as Z€(8, y,) = D(y,)(Y<(1; 6, y,) — ¥,)/~/T in this appendix. Let
S(C E) be an arbitrary compact subset of the state space of the diffusion X.

LEMMA 5. Under Assumption 2, the following asymptotic expansion holds uniformly in (0,y,) € @ x S:
T 1 0WZe(0, y,)
ZW0.y0) = Y | €| =0,
H o k! o€k o o

forany JeN, p>1andseN, where | -| pr is the D?-Malliavin norm (see, e.g., section 1.5 in Nualart [55])

PrOOF OF LEMMA 5. The proof of this lemma follows the similar lines of argument for proving Theorem 7.1
in Malliavin and Thalmaier [51]. Thus, it is omitted. O

ProOF OF ProPOSITION 2. First, we note that the diffusion matrix (12) satisfies

B (o) = B((f (Xo15 Xo2s - -+ » Xom)> Xo2» « - = » X)) = M7 (Xg),
where M is a matrix defined by
af (xo)  df(xo) af (x,)
ax, 0x, o 0x,,
M 0 1 - 0
0 0 1

mxm

Ay
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Since we assume df/dx; # 0, it follows that Assumption 1 is equivalent to the positive definite property of the
matrix B(y,)B()7, i.e.,

det A(xg) = det(a(xp)o(x9)") >0 <= det(B(3)B(¥)") > 0. (A6)

According to the theory of Watanabe [74] and Yoshida [76, 77, 78], the uniform nondegeneracy of the standard-
ized random variable (21) and the convergence of the expansion (23) clarified in Lemma 5 yields the validity
of the expansion (28) in the following sense:

s _J+1

sup =ce,

Z€R, xp€S, 0O

E[(Z°=2)"] = 2 Qu(o)e"

for any J € N and some positive constant ¢’. Based on (24), we have

< C€J+l,

7
VTe T D(y)) ' E[(Z¢ — 2)*] —VTe " D(y,) ™" > (2)€

k=0

sup
ZER, x)€S, €O

for some constant c. Therefore, by plugging in (25) and € = +/T, we obtain that

<cTUHV2 O

V(0) - ﬁe_rTD(YO)_l ZQk(D(yO)(K - YO1)/ﬁ)Tk/2

k=0

sup
KeR*, xg€S, 0€®

Appendix B. Proofs for §4 This appendix is devoted to proving Proposition 3. We begin by introducing
some preparatory notions (e.g., pair partition) in combinatorial analysis in Appendix B.1, which is followed by
a useful lemma in Appendix B.2. Then, based on pair partitions, a formula for calculating (50) is proposed in
Appendix B.3. Finally, a proof for Proposition 3 is given in Appendix B.4 based on all the previous development.

B.1. Paring partitions. First, we introduce the following notions involving partitions of an index set X.
A partition is a collection of pair-wise disjoint and nonempty subsets whose union is X. In particular, suppose
that X contains an even number of elements; a partition is called a pair partition, if each of its sets has exactly
two elements. For example, {{1, 2}, {3,4}, {5, 6}} is a pair partition of the set {1,2,3,4,5, 6}. For an arbitrary
set Y, let A(X,Y) denote the collection of pair partitions of the set X satisfying that none of its elements is Y.
In particular, for Y being an empty set ¢, we simply abbreviate A(X, Y) as A(X). For example,

A({1,2,3,4},{2,3}) = {{{1,2}, {3.4}}, {{1. 3}, {2, 4}}},
and
A({1,2,3,4)) = {{{1,2}, (3. 4}}. {{1, 3}, {2, 4}}. {1, 4}, {2, 3}}}.

For more details about set partitions, readers are refereed to, e.g., Brualdi [7]. For an arbitrary pair-partition
P ={{l,, L}, {l5, 1} -+ {l5,_1. L, }} for some integer set, we correspondingly define

P(i) = {{iI, > ilz}» {iz3’ iz4} s {izzn_, > ilz,l}}
for iy i), iy, i1, s, 0, € {0,1,2,...,d}. Also, we define a characterization of % (i) as
x(2(0)) = Sillilzailgil4' ..0

where §,; is the Kronecker delta function taking value 1 if i = j, and O otherwise. In particular, for the empty
set @, we let x(¥) = 1.

(B1)

) S,
Hap—1 'ty

B.2. A useful lemma. We propose a useful lemma by generalizing Proposition 5.2.3 in Kloeden and
Platen [46].

LEMMA 6. Let i= (i), iy, ...,0) €{0,1,2,...,d}} be an index satisfying that i, > 0 if and only if r €
(Ui Jos e ou gy € {1,2,...,1} for some integer n. For any arbitrary integer k = 1,2,..., and i, i,
o {12,000, d}, we have

X(Z(0))
E(TT W (D) = > XI0) (B2)
1<s<k FEAW{1adas v L2, Ik} {jiadas - - Jn}) ’

if k>n and k + n is even,

E( l_[ Wz’,ﬁ(l)l(i,,i2 ..... i,)(1)> =0,

1<s<k

otherwise.

Ay
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Before giving a proof to this lemma, we provide three concrete examples in what follows.

ExXAMPLE 1. For (i}, iy, ...,0) €{1,2,...,m}°, we have

E[W, (W, (DWW, (D], i (D]=0,  and  E[W, (DW, (1), i, ;»(D]=0,

and

E[W, (W, (W, (D, .5 (D]
= £(8,,1,84,1, 01,1 041,811, 01sis T 011181, 81i 01,1, 80. 80, 81,1 8,0.8, 481,181,080 )

iyiy Cipis "~ izlg iyiy Ciplg  izis iyis Ciply " izlg iyis Ciplg i3y ijig ~ipls i3y i1ig iyiy "~ i3is

as well as

E[W, (DWW, (W, (D, 5,0, (D]
3:(8::,8,,:. 8 48,08, +8;:.8, 0., +6.8.,8, +8,06..8.+5

iyiy Cipls “izig iy D iplg " izis i1is iyl izig iyis iyl 7 iziy iyig ipls " izly iyig iply 1315)

PrROOF OF LEMMA 6. The main idea of the proof is based on iterative applications of Proposition 5.2.3 in
Kloeden and Platen [46], which asserts that a multiplication of a Brownian multiplier to an iterated It6 stochastic
integral can be expressed as a linear combination of iterated Itd stochastic integrals. For ease of exposition, we
introduce a linear operator as follows. For any i € {1,2, ..., d}, we define

W, =W+ WE,
where W'? is a plug operator defined by

OWﬁ‘p(l(il,iz ..... in(1) = > Lo iy i (D)3 (B3)

I<v<i+l

WR is a replacement operator defined by

Wf(l(i],iz ..... in(1) = > 5ii,,1(i1,...,i,,,l,(),i,,ﬂ ..... in(1)s (B4)

1<v<l
for an arbitrary iterated It6 integral 1, ; . . (#). Thus, Proposition 5.2.3 in Kloeden and Platen [46] can be
recasted as

W), iy iy =T 4, () = CM/?U(;‘I b in(D) + OW,R(I(i1 b in(D)- (BS)

Iterative applications of (BS) yield

[T Wy, D oy )= (W o (T iy, iy (D)), (B6)

I<s<k

which can be eventually written as a linear combination of iterated (stochastic) integrals.

When k < n, we claim that

E( T W, (D (D) =00 (87)
1<s<k

Indeed, in this case, there are fewer Brownian multipliers for performing replacement than the nonzero elements
in (i, ,,...,1;). Thus, every term in a linear combination form of (B6) will contain stochastic integrations with
respect to Brownian motions. Therefore, (B7) follows from the martingale property of stochastic integrals.

When k > n, we begin by observing the following basic fact. The total number of nonzero indices in the
iterated (stochastic) integrals on the right-hand side of (B3) is n + 1; the total number of nonzero indices
in the iterated (stochastic) integrals on the right-hand side of (B4) is n — 1. Iterative application of this
fact to (B6) leads to the following observation. Assuming k + n (the total number of nonzero indices in

W, (DWW, (D)... W, (DL, .. ;) (1)) is an odd number, the operation (B6) renders a linear combination of
iterated (stochastic) integrals, each of which has an odd number of nonzero indices. Therefore, we obtain (B7).
Alternatively, we consider the case where k + n is an even number. We note that, in (B5), the consumptions
of nonzero indices in (i, i,, .. .,i;) must be based on replacement operations as defined in (B4). The way to
create iterated Lebesgue integrals in the operations (B3) and (B4) can be characterized as follows: each nonzero

Ay
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index in {ji, j,,. . ., j,} must be replaced by zero via multiplication with a Brownian multiplier; in the rest k —n
operations, (k — n)/2 must be chosen as a plug; the others are thereby performed as replacement.

Each iterated Lebesgue integration in the linear combination form of (B6) must be associated to a pair partition
N A Joreeen o I+ 1,142, 00, L+kY iy Jos - - -5 J,})- Indeed, without loss of generality, we consider an
arbitrary pair partition, e.g.,

a={{I+1,j}L{1+2, ) ... . {l+n ) {I+n+1,14+n+2},

{I+n+3,14+n+4}, ... {I+k—1,1+k}}. (BS)
Such a choice corresponds to the following operations:
e Perform the plug operations using the Brownian multipliers W, . W, . Wi/
o Perform the replacement operations using the Brownian multipliers W; (1) i +3(1) Wi (D).
e Replace i;,i;,...,i; by zeros via the replacement operatlons usmg the Browman multipliers

Wi, (), W, 2(1) V.. ).

Therefore, we have that
( [T W, (Dl . i,)(1)> = > c(L)x(F(P)), (B9)
I<s<k FEAWidas -+ sds HLIF2, .oy I+k}, s - s in})

where ¢(&) is a coefficient (to be determined) associated with a pair-partition &. In particular, owing to the
commutativity, we observe that

1_[ il gs (1)1(1'1’1'2 ~~~~~ il)(l) - ’1+1 (1) ’l+2(1) ’ l/+1 (1)( i4nt1 (1) 11+n+z( ) o VVI'kal (1))

1<s<k
X( lH,,H( ) l,+,+4( ) l,+k(1))l(zl iyyenes 11)(1)

Thus, the term in (B9) generated by the operations corresponding to the pair-partition (B8) is given by

C(@)X(@(l))— [W(R)(OW(R)( o”/(R)(u (R) ( (R) (- W(R) (OW(P) (OW(-P)

U+ L2 Utn igntl i4n+3 ltk—1 Htn+2 ltn+4
G5 Ty iy (D) =) )] (B10)

We note that the iterated Lebesgue integrals resulting from expanding (B10) all have length [ + (k — n)/2. We
also observe that

Wi (Wi W Uiy (1)) = > K(1),
ieB{i, ..., it 2silntds - i linia, s it})

where %(x,y) collects all permutations of an ordered index set x without shuffling the order of indices in

its subset y (for example, SB({i,, iy, i3, iy}, {iy, &, i3}) = {{iy, iy, i3, da} iy, 0 0y B3} iy iy s i3, i 0y g, B3 1))
Therefore, we have

(@) = |B{ir. - - i irpsan ironsas - drgd G e )]

[ g (k—n) /21
X/ / / Aty pyp - dty dty
0 Jo 0

_(l+(k=n)/2 k—n\, 1 1
_<<kww2)x<z )xa+w—MMM_F

Hence, (B2) is proved. [
B.3. A formula based on pairing partition. Based on Lemma 6, we establish the following expression for
a conditional expectation of an arbitrary iterated It6 integral using pair partition.

LEmMMA 7. For any arbitrary index i =(i, iy, ..., i,) with i|,I,,...,i,€{0,1,...,d}, we have

[n/2]

E[L() | W(1) =x]= —_Z( 1y > X XF@)x, XX, (B11)

. n—2j
Lyaj={l1,las .- Ly 2 }CN, SEAN,\L,2;)

where N, denotes the integer set {1,2,...,n}; L, ={l,,1,,...,1,} denotes any arbitrary subset of N, with k
elements; | x| denotes the largest integer less than or equal to x; x; is assumed to be 1 for i =0.

Ay
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ProOF OF LEMMA 7. This proof starts from an explicit construction of the conditional distribution of
(W(t) | W(1) =x) using Brownian bridges. By the construction of Brownian bridge (see Karatzas and Shreve
[43, p. 358]), we obtain the following distributional identity, for any k=1,2,...,d,

(We(0) | W (1) =x) = (W, (1) | W, (1) = x;) = BB (1) 1= By (1) — 1B (1) + 1y,

where 93, ’s are independent Brownian motions. In other words, {BB; (), 0 <t < 1} is distributed as a Brownian
bridge starting from 0 at time O and ending at x, at time 1. For ease of exposition, we also introduce %,(1) =0
and x, = 1. Therefore, we have

E[L(D)| W(l):x]:E(fO fo ~~-/OT"7]d(%,-,, (1) — 1,3, (1) +1,x,)--d (%, (tl)—tl%i,(l)ﬂ]xl-,))- (B12)

By expanding the right-hand side of (B12) and collecting terms according to monomials of x,’s, we obtain that

E[L()|W(1)=x]=)_ > c(ll,lz,...,lk)x,-l]xilz,...,x,»,k,

k=0{ly,l, ... .kl }CN,=(1,2,...,n}

where the coefficients are determined by

I rn 1
ey lyy. o 1) = Efo /0 /0 d(B, (1) — 1,9, (1) - d(B, _(1,1) — 1,1 %, (D) dn,
: d(ggi,k,, (t,-1) — tlk—l%i/k,l (1) d(%i,ﬁl (t1y11) — t12+1%i,2+1 (1) d,
'd(%i,z_l (1) — ’12—1%,'12_, (1)--- d(%i,]+l (t,41) — t11+1935,]+l (1)) dr,
(B, (1) — 1B, (1) (3B, (1) = 1,5, (1) (B13)

To explicitly calculate (B13), we define the following index mapping. For an index i =(i,, i,, . . ., i), an integer
set L, ={l,,1,,...,1}, and any subset M C N,\L,, let

P L, M) = (s Jos -+ s Ju)s
where, for any r=1,2,...,n,
Jj,=0, ifreL,UM; j.=1i,, otherwise.

Thus, we have

Uy by 1) =E( Y )M (1) H%,(D)

MCN,\Ly reM

. (—1>'ME(1¢<i;Lk,M><1>H%,,a)).

MCN,\Ly reM
By Lemma 6, we have

-L oy @,

T SEAWNN\LE, Ny \(LUM))

E<I¢<i: Lo ] %"(1))

reM

if n—k is an even number and |M| > (n—k)/2, where |S| denotes the cardinality of a set S;

E<I<p(i;Lk,M)(1) I1 %i,(1)> =0,

reM

otherwise.

Ay
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So, if n — k is an odd number, we have ¢(l;,[,,...,1,)=0. If n—k is an even number, we deduce that

1 .
(il l) == 3 (=D > x(Z(i))
 Men\L FEAN\Lg, N \(LgUM))
1 n—k
= — >oo=n Y > X(2(7))
(=) 2 PEA(N,N\Ly) Me{M: |M|=r, PEA(N,\Ly, N, \(LyUM))}

Ly ¥ <—1>’< (n=H)/2 )2”‘k"x(9‘°(i))

T PEA(N,\Ly) r=(n—k)/2 r—(n—k)/2

D N NCENEI0))

" pea,\Ly)

where we have employed combinatorics to calculate the cardinality of a set, i.e.,

. _ _ (n—k)/2 n—k—r
M |M|_r,@eA(Nn\Lk,N,,\(LkUM))H—(r_(n_k)/z>2 o

Hence, the formula (B11) follows immediately. [

B.4. Proof of Proposition 3. Finally, we give a proof to Proposition 3 based on Lemma 7.

PROOF OF PROPOSITION 3. We express (B11) in an alternative way according to monomials of x,, ..., x,.

Thus, combinatorial analysis and the definition (B1) indicate that the term x’,”. .. xﬁ" for some k,k,,...,k; €
{1,2,...,n} appears in (B11) if and only if n;(1) — ky, n;(2) — k5, . . . , n;(d) — k, are all even integers. In this
case, the total number of appearances of the term x|'. .. x,’ is given by

ﬁ[muvni(,)_k,n("ik(l’))},

=1

where |A(N,)] is the total number of all possible pair partitions of the set N, = {1, 2, .. ., n}. It is straightforward

to observe that (n/2)—1
n/2)= —2k
soni=v= T ("3") /(5)r
k=0 2 2

for an arbitrary even integer n. Also, any arbitrary pair partition in A(N,,_) has exactly (n;(I) —k;)/2
elements. Therefore, we obtain the formula (51). O
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