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1. Introduction. Asian options, whose payoffs depend on the arithmetic average of the underlying asset
prices over a prespecified time period, are among the most popular exotic options traded actively in the financial
markets. Asian options and Asian-type derivatives have a wide application in equity, currency, interest rate,
energy, and commodity, due primarily to the following two attractive features. First, they can help reduce the
risk of potential market manipulations by large market participants. Second, they can readily serve as appropriate
hedging instruments for the firms with significant revenues collected periodically and associated with certain
financial assets.

Consequently, the valuation of Asian options has attracted much attention from both researchers and practition-
ers. Research on the pricing of continuously monitored Asian options under various models has made significant
progress. For example, under the Black-Scholes model (BSM), Linetsky [46] derived a spectral expansion for
continuously monitored Asian option prices. Vecef [63] provided a numerically stable one-dimensional partial
differential equation (PDE) for the Asian option price. An analytical single Laplace transform for the Asian
option price under the BSM was obtained by Geman and Yor [28], and closed-form double transforms were
provided by Fu et al. [22] and Fusai [23]. As a generalization of Geman and Yor [28] and Fusai [23], Cai and
Kou [12] derived a closed-form double Laplace transform of the Asian option price under the hyper-exponential
jump diffusion model. Fouque and Han [21] employed singular perturbation to obtain an asymptotic expansion
of the continuously monitored Asian option price under the fast mean-reverting stochastic volatility model. These
are only a small portion of a large volume of literature on continuously monitored Asian option pricing. For an
extensive literature review, we refer to, e.g., Cai and Kou [12].

It is worth noting that most Asian options traded in the real marketplace are monitored discretely rather
than continuously. Nonetheless, this “discretely monitoring” structure poses a great challenge to the associated
pricing problem. Pioneering works under the BSM consist of the fast Fourier transform (FFT)-based recursive
method by Carverhill and Clewlow [14] and the PDE approach via the change of numeraire by Andreasen [4].
Ju [34] proposed an accurate Taylor expansion approach (around zero volatility) to the pricing of discretely
monitored Asian options and basket options under the BSM. Howison [31] developed approximations to various
options with discrete structures under the BSM via the multiple timescales method. Recently a variety of
sophisticated recursive algorithms have also been developed to evaluate discretely monitored Asian options
under general exponential Lévy models. For instance, Fusai and Meucci [24] proposed a new numerical pricing

789
i,


mailto:ningcai@ust.hk
mailto:cxli@gsm.pku.edu.cn
mailto:shichao@ust.hk

Downloaded from informs.org by [222.29.93.10] on 09 April 2015, at 22:58 . For personal use only, all rights reserved.

RIGHTS

Cai, Li, and Shi: Pricing Discretely Monitored Asian Options in Diffusion Models
790 Mathematics of Operations Research 39(3), pp. 789-822, ©2014 INFORMS

method combining a recursive numerical quadrature with the FFT algorithm. Fusai et al. [25] presented a
numerical scheme based on maturity randomization. Cerny and Kyriakou [15] suggested an improved FFT
pricing algorithm that complemented the existing literature. Within the nonexponential-Lévy framework, Fusai
et al. [26] derived an elegant analytical pricing formula in the Cox-Ingersoll-Ross (CIR) model and applied the
results to commodity markets.

This paper aims at pricing discretely monitored Asian options under general one-dimensional diffusion models,
all of which are nonexponential-Lévy models except the BSM. Specifically, we manage to derive a closed-form
asymptotic expansion for the Asian option price based on the celebrated theory by Watanabe [64]. This theory
developed Malliavin calculus for the so-called (generalized) “Wiener functionals,” which can be roughly thought
of as (generalized) functions of random variables related to Wiener processes or Brownian motions, and applied
it to investigate the large-deviations-based asymptotic expansion for heat kernels. Accordingly, it can be applied
naturally to evaluate discretely monitored Asian options under the diffusions because the Asian option payoffs are
essentially generalized Wiener functionals. Despite the sophisticated theory, the computation for the asymptotic
expansion is very much similar to the Taylor expansion of a common function and thereby can be obtained
in a systematical manner by differentiating a standardized payoff function and then explicitly calculating some
conditional expectations relating to normal distributions.

Note that one important issue associated with asymptotic expansion approaches is which small variable to
be selected as the expansion parameter. A small variable naturally involved in discretely monitored Asian
options is the length of the monitoring interval. For theoretical convenience we choose its square root as
the expansion parameter. Therefore, our expansion can be viewed as a “small-time” expansion. Small-time
expansions via different techniques have been widely applied in finance; see, e.g., Broadie et al. [10, 11], Hagan
et al. [30], Kou [38], Andersen and Brotherton-Ratcliffe [3], and Takahashi and Yamada [61]. In the real financial
markets, the monitoring interval length of discretely monitored Asian options is typically equal to 1/12 (monthly),
1/52 (weekly), and 1/250 (daily), which turns out to be small enough to make our asymptotic expansion converge
quite fast. As a result, the closed-form expansion formulas up to the third order have achieved a high accuracy;
see numerical results in §5.

Indeed, the applications of Malliavin-calculus-based approximations in option pricing have led to many elegant
results; see, e.g., Yoshida [65], Takahashi [58, 59], Benhamou et al. [6, 7, 8], Gobet and Miri [29], Kunitomo and
Takahashi [41, 42], Uchida and Yoshida [62], Shiraya and Takahashi [55], and Takahashi et al. [60]. In particular,
to approximate the law of the very general average (including both continuous and discrete averages) of the
marginal of diffusion processes, Gobet and Miri [29] proposed an efficient approximation with nonasymptotic
error bounds and higher accuracy in the cases of small time or small volatility; Kunitomo and Takahashi [40]
presented a “small-diffusion” expansion for pricing continuously monitored Asian options under the Black-
Scholes model; Shiraya and Takahashi [55] derived a small-diffusion expansion formula (up to the third order)
for pricing discretely monitored Asian options with either uniform or nonuniform time steps under the Heston
and the A-SABR models. Fundamentally different from the aforementioned expansions with the expansion
parameters selected as auxiliary ones, our small-time expansion is based on a different parameterization, where
the expansion parameter comes naturally from the option contract. In general diffusion models, our small-
time expansion can lead to closed-form expansion formulas in terms of only the probability density function
(pdf) and the cumulative distribution function (cdf) of the standard normal distribution, whereas the small-
diffusion expansion formulas may involve some integrals. Although in many practical cases these integrals can
be evaluated explicitly, they may need to be calculated numerically in some sophisticated nonlinear cases studied
by, e.g., Ait-Sahalia [1] and Bakshi et al. [5]. Another key difference between our work and the literature is
that we develop a systematic method to explicitly express general correction terms rather than first several ones.
This is made possible because we apply the Itd-Stratonovich calculus, which offers significant computational
convenience compared with the It6 calculus employed in many other approaches in the literature. Moreover,
we propose a novel method for calculating a new type of conditional expectations involving iterated stochastic
integrals, which is potentially useful in a wide range of studies in applied probability and stochastic modeling.

The contribution of our paper is twofold.

First, we propose a closed-form small-time expansion approach to pricing discretely monitored Asian options
in general one-dimensional diffusion models, where the expansion parameter is naturally selected to be the
square root of the monitoring interval length. Under some regularity conditions, we provide a rigorous proof
for the convergence of the expansion formula, which, however, seems unavailable for many existing expansion
methods for option pricing.

Second, we develop a systematic method for the explicit calculation of the general correction terms of
the asymptotic expansion pricing formula up to an arbitrary order in general one-dimensional diffusion mod-
els. Moreover, this systematic method can be implemented via any symbolic computation package such as
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TABLE 1. Some popular asset pricing models nested in the class of one-dimensional diffusion models.

nx) o (x)
The Black-Scholes-Merton (BSM) model (r—q)x (r>0,9>0) ox (0>0)
The Brennan-Schwartz model k(0 —x) (k>0,0€R) ox (0>0)
The Cox-Ingersoll-Ross (CIR) model k(0 —x) (k>0,0€R) 8/x (6> 0)
The constant elasticity of volatility (CEV) model rx (r>0) SxP1 (8 >0,B€R)

Mathematica. (It seems that most expansion pricing methods in the literature usually discuss only the explicit
computations of the first several terms rather than general terms because this is always challenging, if not
impossible.) In particular, we explicitly provide the closed-form expressions for the first four terms. Numerical
experiments suggest that the corresponding expansion formula up to the third order performs very well for a
broad range of diffusion models, including not only those satisfying these regularity conditions such as the BSM
and the Brennan-Schwartz process, but also those violating them, e.g., the CIR model (see Cox and Ross [17])
and the general CEV models (see, e.g., Cox [16], Linetsky [45], Linetsky and Mendoza [47]).

Furthermore, numerical results demonstrate several appealing features of our expansion formula up to the
third order:

(I) Tt is highly accurate and performs consistently well for a wide range of model parameters and contract
parameters.

(IT) Tt usually takes less than 0.5 seconds to generate one numerical result. This is mainly because the
expansion has a closed-form expression only in terms of the standard normal pdf and cdf.

(IIT) The closed-form expansion formula is simple to implement. Despite the seemingly complicated expres-
sion, the expansion formula consists only of the standard normal pdf and cdf. No other complex numerical
procedures such as Fourier or Laplace transform inversions and numerical integrations are involved in the
implementation.

(IV) Our pricing method can also be applied to accurately evaluate hedging parameters such as delta and
gamma. Indeed, closed-form approximations to these Greeks can be obtained simply by differentiating the
closed-form expansion pricing formula in a straightforward way.

The remainder of the paper is organized as follows. Section 2 presents our main theoretical results about the
small-time asymptotic expansion of discretely monitored Asian option price. Section 3 exemplifies the explicit
calculation of closed-form expansion formulas using the first four terms under the BSM model, and §4 provides
a systematic method to compute explicitly the expansion formulas up to an arbitrary order in general diffusions.
Numerical results are given in §5. Most proofs are deferred to the appendices.

2. The main result.

2.1. The model and discretely monitored Asian options. Consider an asset pricing model {S(7): ¢ > 0},
which follows a one-dimensional diffusion governed by the following stochastic differential equation (SDE)
under a risk-neutral measure P:

dS(t)=p(S@))dt+a(S(1))dW(r), with S(0)=s,>0, (1)

where the functions o (x) > 0 and w(x) are continuous for x € (0, +o0) and {W(¢): ¢t > 0} is a standard Brownian
motion. The class of one-dimensional diffusion models nests a variety of popular asset pricing models; see
Table 1. It is worth pointing out that if {S(¢)} is the price process of a traded asset, then the drift w(S(z))
under the risk-neutral measure P must be of the form rS(¢) or (r — ¢)S(¢), where r is the risk free interest
rate and d the dividend yield; see, e.g., the BSM model and the CEV model in Table 1. Nonetheless, if {S(¢)}
corresponds to an asset that cannot be directly traded, the drift w(S(¢)) under the risk-neutral measure P is not
necessary to take the form of rS(¢) or (r — q)S(t) because the discounted price process does not have to be
a martingale under the risk-neutral measure. For instance, the Brennan-Schwartz model and the CIR model in
Table 1 can be used to model the spot price of a commodity, which is usually not traded directly, and therefore,
their drifts can be of the mean-reverting type under the risk-neutral measure. Note that the commodity futures
price, however, is a martingale under the risk-neutral measure because the futures contract is assumed to be a
traded asset. For more discussions on the spot prices and future prices of the commodities, we refer to, e.g.,
Li and Linetsky [44], Schwartz [54], and Geman [27].
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The price of a discretely monitored Asian call option at time O is given by
1 m +
CA)=E|e"|—=>_S(jA)—K) |, 2
W=t (T sn—x) | ©)

where r is the risk-free interest rate, 7' the maturity, K the strike price, and the m + 1 monitoring dates are
equally spaced: 0, A, 2A,...,mA=T, with A denoting the length of monitoring interval.

2.2. The selection of expansion parameter. The main objective of this paper is to obtain a closed-form
asymptotic expansion for the discretely monitored Asian call option price (the Asian put options can be dealt
with similarly) under the general diffusion model (1). The first important issue is the selection of an expansion
parameter €. For pricing European type options, various effective applications of the so-called small-time expan-
sions have been proposed by choosing the option maturity as a parameter to expand; see, e.g., Andersen and
Brotherton-Ratcliffe [3] and Hagan et al. [30].

In this paper, we select the expansion parameter to be the square root of the monitoring interval length
(ie., € = \/K) rather than the option maturity. Note that such a choice naturally comes from the contract
parameter of the discretely monitored Asian option instead of auxiliary assignments used in the small-diffusion
expansions. Furthermore, the typical values of +/A in the marketplace such as 1/1/12 (monthly monitored),
+/1/52 (weekly monitored), and /1/250 (daily monitored) turn out to be sufficiently small to guarantee a fast
convergence of the associated asymptotic expansions. As a result, the expansion pricing formula with only a
few terms, e.g., four terms up to the third order, can achieve a high accuracy; see the numerical examples in §5.

2.3. The main result. Before presenting our main result, Theorem 2.1, and proving its validity, we first
provide a heuristic approach to the main result to motivate readers by the intuition behind the scenes. Define

X(1,€):=S(*1), with e=+A.
Then by (1) we obtain
X(1, €) = 5o+ ezf()t,u,(X(u, €)) du+ E/OZU(X(M, €))dW (u, €), 3)

where W(t,€) := (1/e)W(€*t) is a standard Brownian motion adapted to the filtration generated by
{W(€*t): t > 0}. Without any confusion we write W(z,€) as W(t) in what follows. For ease of exposition,
define

1
B,:=—W(), fori=1,2,...,m. 4
7 () 4)
Then (B, B,, . .., B,,) has a multivariate normal distribution, and a direct calculation yields
p;; :=Corr(B;, B;) = Vmin(i, j)/max(i, j), fori, j=1,...,m. (5)

Enlightened by the asymptotic expansion procedure proposed in Watanabe [64], we standardize X (k, €) in
the following way:

X(k,€)—s,
€0 (so)y
where the constant y > 0 will be specified later for ease of computation. Note that the goal of such a standard-
ization is to guarantee the convergence of our expansion. Then the Asian call option price C(A) in (2) can be
expressed in terms of {Y, (e€): k=1,...,m}:

—rT A m + WK —
T (e ) ] winem TN, )
m+1 k=1 VAT (sy)y
To obtain an asymptotic expansion for the Asian call option price C(A) in (7), we take the following four
steps heuristically.
e Step 1. Derive a power-series expansion for X (k, €) around € =0. For any J =0,1,2,...,

, fork=1,2,...,m, (6)

C(A) =

J
X(k,e)=Y F_;€+0(e), with F =5, fork=1,...,m. 8)

Jj=0

This can be done intuitively by regarding X (k, €) as a function of € and then taking a Taylor expansion.
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o Step 2. It follows from (6) and (8) that a power-series expansion for ¥, (€) around € =0 is

J
. F, .
Y (e)=>Y, ;€ +0("), withy, = 2 fork=1,...,m. )
j=0 ’ ’ o ()Y
e Step 3. Derive a power-series expansion for G(€) := (3_;_, ¥, (€) — z)* around € = 0 intuitively by the
chain rule and Taylor expansion.
J
G(e) =) @;(z)/ + O(e’™), (10)
j=0

where the first four coefficients are explicitly calculated as

Dy(z) =(Zy—2)", D(z) = Z Y, l{zozz}’
i=1

m 1 m
q’z(Z)=ZYi,21{zozz}+5 > YiaY,8(Zy—2), (11)

i=1 i, j=1

m 2 m 1 m ,
CI)S(Z):ZYiﬁl{ZOzz}—i_E Z }/i,ll/j,z‘s(zo_z)‘i‘; Z Yi,le,lYk,IS(ZO_Z)'

i=1 tij=1 g k=1

Here 6(-) denotes the Dirac delta function and
Zy:=> Y. (12)
k=1

e Step 4. Taking expectations on both sides of (10) and plugging the result into (7) yields

e yv/Aa(s)

c@= m+1

J
(Z Q,(z)€ + O(e’“)), with Q;(z) := E®;(z) for j=0,...,/J.
=0

REMARK 2.1. It is worth mentioning that although the above asymptotic expansion of C(A) and the inter-
mediate results (8)—(10) were derived heuristically, their validity can all be justified rigorously in the sense of
expansions for random variables via the theory of Watanabe [64]; see the following Theorem 2.1 and its proof
given in Appendix A via the Malliavin calculus for generalized random variables proposed in Watanabe [64] and
Yoshida [65] as well as the related theory of asymptotic expansion for option pricing developed in Kunitomo
and Takahashi [42].

THEOREM 2.1. Assume that o (sy) # 0 and the two functions u(-) and o(-) have bounded derivatives of all
orders. For any J =0,1,2, ..., the discretely monitored Asian option price (7) (or (2)) admits the following
asymptotic expansion in the sense of classical calculus

—rT A J )
C(A) = e 7\/_0'(So) ZQ»(Z)A’/Z + O(A(J+1)/2) . (13)
m—+1 pr Sl
where m is the number of monitoring intervals, A =T /m is the length of monitoring intervals, and
Q(z) =EP;(z), forj=0,...,J, (14)

with ®,(z), j=0,1,2,..., given by (8)—(10).
ProoE. See Appendix A.

REMARK 2.2. The coefficients ;(z) in (13) can be calculated through (8)-(10) and (14). Note that most
existing expansion methods for option pricing focus on the derivation of the first several expansion terms rather
than discuss the explicit calculation of general terms. This is because the calculation of higher order terms
becomes much more complicated, and it is usually very challenging, if not impossible, to provide a systematic
approach to the calculation of general terms even for European type options. In contrast, for our expansion
method we manage to illustrate how to explicitly calculate all the coefficients (i.e., the general expansion terms)
in a systematic way via only basic mathematical operations (without recursions and numerical integrations
involved) under the general one-dimensional diffusions; see §4.3. This is made possible mainly because of the
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convenience offered by our particular parameterization (3) and the computational advantage rendered by the
application of the Itd-Stratonovich calculus that resembles the classical calculus. However, for other expansion
methods, the associated parameterizations and computational methods may not lead to explicit results. For
example, the expansion in Takahashi et al. [60] uses a different parameterization (i.e., the small diffusion) and
applies the Itd calculus in the computation. As a result, their calculation relies on recursion-based algorithms
and (multidimensional) numerical integrations.

REMARK 2.3. Another appealing feature of our expansion method is that, under some regularity conditions,
we provide a rigorous proof for its validity, which is unavailable for many existing expansion methods for option
pricing. It is worth pointing out that these technical regularity conditions on the functions p(-) and o(-) in
Theorem 2.1 are conventionally proposed for the study of diffusion models; see, e.g., the monographs by Ikeda
and Watanabe [32] and Nualart [50]. It is well known that relaxation on these conditions would pose a great
technical challenge for theoretical verification of the validity. However, these conditions are sufficient but not
necessary. As we shall see in §5, numerical examples suggest that our expansion method is not limited to these
sufficient conditions but applicable in a wide range of models.

3. An illustrative example: The Black-Scholes model (BSM). Before discussing the explicit computations
of the general expansion pricing formula up to an arbitrary order in the general diffusion model in §4, we first
use a simple model—the BSM—as an example to illustrate how to explicitly compute the first four coefficients
Q;(z) for j=0,1,...,4 in (14), or equivalently the expansion pricing formula up to the third order, in an
easy way.

As we shall see, the first four coefficients, and in fact, all Q j(z)’s, only involve the standard normal pdf
and cdf, and so does the expansion formula. Numerical experiments demonstrate that the resulting closed-form
expansion pricing formula up to the third order is highly accurate; see §5.1.

Under the BSM specified in Table 1,

X (k, €) = syexp(oeW (k) + €°bk), (15)
where b:=r—q— %0'2. From (11) and (14) we know that the first four coefficients are given by
O(2) =E(Z, —2)
0,(2) = ZE[)/I 1 l{zozz}]
i=1

m 1 m ]6
() = Y ElY, o]+ 5 3 ELY, 1Y, 18(Z = 2)] (1o
i=1 S, j=1

m 2 m 1 ,
Q3(Z):ZE[Y},31{Z()ZZ}]+5AZ E[Yi,le,Za(ZO_Z)]—'__ Z E[Yi,IYj,lYk,la(ZO_Z)L

|
i=1 i, j=1 3! i, j, k=1

where Z;:=>"}", Y, , and

1 Vi
Yio= —W(k)=—5B,
‘yl Y 2bk k 2b
o (w00 + 2 2 £ (o 2)
2y o 2y o (17)
1 kvk
Y= a(UZWS(k) + 6bkW (k)) = o (0*B; + 6bB,)
1 12b°k? k> 12p°
Y 5= 0y <a3w4(k) + 12bakW (k)* + - ) =5y <a33§ + 12bo B} + - )
which are calculated by first differentiating X (7, €) with respect to (w.r.t.) € to obtain F, ; for j=1,...,4 and
then substituting them into (9). For computational convenience, we choose
- (2 1
Var(Z W (k) :\/m(er )6( m+ )’ (18)
k=1

such that Z,=3>"}" | Y, , =>_;_, W(k)/v has a standard normal distribution.

Ay



Downloaded from informs.org by [222.29.93.10] on 09 April 2015, at 22:58 . For personal use only, all rights reserved.

RIGHTS

Cai, Li, and Shi: Pricing Discretely Monitored Asian Options in Diffusion Models
Mathematics of Operations Research 39(3), pp. 789-822, © 2014 INFORMS 795

First, ,(z) is easy to compute as follows:

Q) =E(Zy—2)" = /_:(u —2)"d(u)du=zN(2) + d(2) — z, (19)

where ¢(-) and N(-) denote the standard normal pdf and cdf, respectively.

Second, we can see from (16) that the calculation of Q,(z), Q,(z), and Q,(z) reduces to the computation of
the following three types of expectations.

Type 1: E[Y, 1 1z-4]s E[Yi 217,251, E[Y; 317,20 ]:

Type 2: E[Yi,lyj,IS(ZO -2, E[Yl 1 Yj,26(ZO -2

Type 3: E[Yi,IYj,lYk, 10'(Zy—2)].
Conditional on Z;, the above three types of expectations can be evaluated as follows:

Type 1: E[Y, 117201 = E[l2,20E(Y; ;1 Z))]

= [ ElY,|1Z=216(z)dz. for j=1,23; (20)

Type 2 EIY,,%,3(Zy~ 9] = [ 8(u—ELY, Y, ] 2= ul(u) du

= E[Y,\Y;,1Zy=2]d(2), forl=1,2; (21)

Type 3:  E[Y;\Y; Y, 18'(Zy—2)] 2[_ §'(u—2)E[Y,,Y; Y, 1 | Zy=u]d(u) du
o0 d
= — [ 8=z AE[Y, 1Y, Y, 1| Zy = uld(w) du

a
= _a_Z{E[Yi,IYj,IYk,l |Z0=Z]¢(Z)}» (22)

where the derivations of (21) and (22) are based on the properties of the Dirac delta function (see Kanwal [35]).
Since Y, ; is a polynomial in B; forany i=1,...,mand j=1,...,4 (see (17)), we conclude from (20)—(22)
that the calculation of ,(z) for j = 1,2, 3 is reduced to explicit computations of the conditional cross-moment

M) (2) = E(BY B, ... B | Zy=2), (23)
its integration

RED @)= [ MU )b () du, (24)
and its differentiation

QUL ) == (MU 6], (25)

where 1 <i,,i,,...,i;,<mand s, p;, p,,...,p, > 1 are all integers. Indeed, we point out that this is true not
only for the first four coefficients but also for general ones.

Note that the random vector (B,, B,, ..., B,,, Z,) has a multivariate normal distribution. Thus the condi-
tional distribution of (B, B,, ..., B,,) given Z, =z is also normal, and the corresponding conditional moment
generating function has a closed-form expression as follows:

m m 1 m
@B, .., B, 2) = E(eX= P | Z, = 2) = eXP<Z Bepiz + D) > U:9(py — Pip-i)>’
k=1

ij=1

where p;;’s are defined in (5) and
1
p, .= Corr(Z,, B,) = 2—(2m —k+1)Vk, fork=1,...,m.
Y

Therefore, we can derive M((l’l' PR ?)(2) explicitly by differentiating ¢(9,, 3, . . ., 9,;z) at (9, 0,,...,,)=
(0,0,...,0). As a by-product, it can be seen that M ’“)(z) is a polynomial in z with order p :=p, +p, +

(iyips e is)
---+ p,. We summarize these results in the following lemma.

Ay
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LEMMA 3.1. The conditional cross-moment M((I.'l’ L f)(z) defined in (23) is a polynomial in z with order

pi=p +p,+---+pg

rle(Y, 0y, ..., 0,5 2)]
IO IO, 00T |y o o o

(26)

(irsig, ooy

V4
M(m,pz,-ui,g)x)(z) — Z anZ" =
n=0

REMARK 3.1. To explicitly compute the coefficients {a,} in (26), we need to differentiate ¢ (3, J,,
o9, z)at (B, D, ..., 19,)=(0,0,...,0). Indeed, this can be done in a simple manner via any symbolic
computation package such as Mathematica.

REMARK 3.2. To calculate Q,(z), Q,(z), and Q;(z), we provide explicit expressions of all related
M((fltzpzlvl)%)(Z) as follows:
M) () = E(B;| Zy=2) = piz.
M) (2) = E(B!| Zy=2) = p}z*+ .
M) (2)=E(B} | Zy=2) = p}z’ +3pipiz.
M (2) = E(BB} | Zy=2) = p,p32* + pifz +2p; 72,
M) (2) = E(BIBY | Zy = 2) = 2k + (p}22 + pR)(p322 + p2) + 4rypip 2,
M((fji) (2)= E(B?sz | Zy=2)= P?P?ZS + (ﬁzzpf + 6p12pjrij + 3P5P_,2P?)Z3
+ (3Pzﬁlzp_3 + 6Pi’"i_2,‘ + 6Pjp_?’"ij)z’
M7 () = E(BBIBY | 2y =2)
= p; PP+ (P}PiPi + PiPIPE + P PIPL +4Pip P (PiTii + PiTa + pitiy))2t
+(}P30% + PP P% + i P pi + 207 1+ 2p] ik + 2077+ 8pip T
+8p,piriiri +8p;piriiTi +4pipPiri + 4piﬁ§pkrik +4p;p;pyri)z
+ (F_’,zﬁfﬁi + 2ﬁi2rj2k + 213?”,‘21{ + ZP_i”izj + 8rijrikrjk)7

(27)

where

Tij == Pij = PiP;j and pi:=V1-pi (28)

Now let us turn to R"7> ") () and Q""" (z) defined in (24) and (25), respectively. Before addressing

(iy.ip, - . iy) (URRRPPN A
how to compute them, we first present a lemma.

LEMMA 3.2. Define P,(x):= f;o u"¢(u) du. Then {P,(x): n >0} can be computed recursively:
Py(x)=1—N(x),
P = (0. 29
P(x)=x"'dp(x)+(n— 1P, ,(x), forn=2,3,....

PROOF.  Py(x) and P,(x) can be derived via a straightforward calculation. If n > 2, the recursion (29) can be
obtained simply by integration by parts. [

Based on Lemmas 3.1 and 3.2, we have the following result.

LEMMA 3.3. RVVP2 P () and QWP (7) defined in (24) and (25) are given by

(i],iz ~~~~~ i;) (il’iZ rrrr i_&)
( ) z
RV () =) a,P(2), (30)
n=0
p
QEZ',}Z’?,’ - ,',-’5") (2)= [aoz + > a, - HZ"‘)} (2), @31
n=1

where a,’s are the same as in Lemma 3.1 and P,(-) are defined in (29).
PrROOF. Substituting (26) into (24) and (25) and applying Lemma 3.2 yields the results immediately. O

Now we are ready to present the closed-from expansion pricing formula up to the third order.

Ay
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THEOREM 3.1. In the BSM, the expansion (13) for the discretely monitored Asian option price holds. In par-
ticular, the asymptotic expansion pricing formula up to the third order is given by

e‘rT\/Ka'(so)‘y
m+1

Ca) = (Q(2) + (A + 0y (2)A + Q3 (2)AY? + 0(A%)),  as A—0, (32)

where the coefficients Q,(z) for i =0, 1,2, 3 are explicitly calculated as follows

Qy(z) =zN(2) + ¢(2) — z,

bm(m+ 1)

@)= 5= SR )+ P (- N ),

Q)= Ha;+ ) Ib,;,

i=1 i, j=1

O;(z)=) Ma,+ Y b+ Y Illc;,

i=1 i, j=1 i, j k=1

Here
PP s (1)
Ila, = 7 (6 o Ry (z) + bR, (z)),
YR @) @ LAY
ny ——¢() MG @)+ P+ 2 M(])(Z)-f-—z ,
ag

12
llla, = —( R(} (2 )+—R§,2))( )+—RE?>)( )>’

i3/2
b, = 7 ¢><z>( M@+ Ml + Mo+ - M‘”(z))

IMlc,, = 6”73"’(1)( 0@+ (0870 + 083 + 007 )
b? b3
+ 2 (08@ + 05+ 0B@) + G_)

and all the involved M"":P> ”‘)(z) are explicitly given by (27). Moreover, all the involved RPvP p‘)(z) and

(iy.ia, (iy.ia,
Qéf,'fz, ) 2 (z) depend on those M((lp‘lﬁz """""" ; ;)pﬁ)(z) in (27) through (30) and (31).

PrOOF. We note that the drift and volatility functions under the BSM have bounded derivatives of all orders.
Therefore, Theorem 2.1 guarantees the convergence of the expansion pricing formula (13) and in particular (32).
The closed-form expression of Q,(z) has been derived in (19). As regards Q,(z), Q,(z), and Q,(z), substitut-
ing (17) into (20) (22) and then pluggmg the results into (16) yields immediately their closed-form expansions
in terms of M(lp‘l”2 """ ”‘ (2), R(f”,’” """ ps (z) and Qéf"}pz""i”;s)(z). O

1.2 1-%2 1552500 s

4. Closed-form asymptotic expansions of discretely monitored Asian option prices in general one-
dimensional diffusions. In this section, we shall illustrate that following the road map in §2, it is possible to
derive the closed-form expansion pricing formulas (13) up to any order J € N under the general one-dimensional
diffusion models by explicitly computing related general coefficients );(z) for j =0, 1,...,J defined in (14).
The computation procedure can be regarded as a generalization of that under the BSM as discussed in §3.

By (10) and (14) we obtain

Q(2) = E@y(z), with ®y(2) =(Zy—2)"

and
Qu(2) =ED,(z), with &, (2) = > 1997(2,)

i Y, .,....,Y ., fork>1, (33)
(0, (ipaigs oo nig)s Grodas oo JNES ™"

Ax! i1 T 2 > T

Ay
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where ®,(z) for k > 1 are derived via the chain rule of differentiation, 7'(-) is a function defined as
T(x):=(x—2)",
and the index set &, is specified as

Fe={@ L) 11eNi=(ij iy i) e{l, 2, ..om) i=isjose -0 i)
with j,;>1fori=1,... 0 and j, + j,+---+j, =k}. (34)

To calculate Y, ;, we need to differentiate X(k, €) = S(€%i) w.r.t. € to obtain F, ; for jeNand k=1,...,m

and then substitute the results into (9).

Unlike the BSM, the SDE (1) for S(7) in the general diffusion may not have an analytical solution. Therefore,
X (k, €) in (3) may not have an analytical expression that can be differentiated directly w.r.t. €. Instead, motivated
by Watanabe [64], we can write (3) as an equivalent Stratonovich form

dX(t,e)=€*h(X(t,€))dt +ea(X(t,€))odW(t),
where “o” represents the Stratonovich integration. Then applying the Itd-Stratonovich formula repeatedly (see,
e.g., Kloeden and Platen [37]) yields the expressions of general F, ; for jeNand k=1,...,m.

LEMMA 4.1.  The coefficients F, ; in (8) can be expressed as a linear combination of iterated Stratonovich
integrals:
E =) CG(sp)hk), forjeN andk=1,...,m, (35)
llill=J

where, for any index i= (i, ..., i,) € {0, 1}", Ji(t) denotes an iterated Stratonovich integral

toan fhot
Kay= [ [T edW, (1) 0 dW, (1) 0 dW, (1),
with W, (t) := W(t) and Wy(t) :=t. The coefficient C;(s,) is given by

Ci(sp) = &gi"(' i (&diz(ai])))(so)’ (36)

with o, (x) = o (x) and 0y(x) = b(x) := u(x) — 30(x)0’(x). Here two differential operators
d )
Ay :=b(sy) — and A =0 (s))— (37)
dx 0x
map real valued functions to real valued functions, and |i|| is a norm of the index i defined as
lil=n+#{re{l,2,...,n}:i,=0}. (38)

Proor. This is an immediate result of Theorem 3.3 in Watanabe [64]. O

REMARK 4.1. Given the explicit forms of w(-) and o (-), all the coefficients C;(s,) can be explicitly calcu-
lated via any symbolic computation package such as Mathematica.
In particular, we have

k
Fo =0(s)J(k)  and J(l)(k)zfo 0dW(1,)=W(k), fork=1,...,m.

Thus by (9) and (12),
m m F;{, 1 m W(k)
Zy= Z Yio= Z = >
k=1 k=1 a(s))Y = Y
which is the same as in the BSM case. Therefore, y can also be selected as (18) such as Z, has a standard
normal distribution. It follows that under any general one-dimensional diffusion model, ),(z) is the same as in
the BSM case and given by (19).
As for Q,(z) for k> 1, a similar idea of conditioning on Z, as under the BSM implies that the calculation
can be reduced to the computation of the following conditional expectation

1
PO () = (n 5 Gi)
r=1

Zy= z) = E(rli[l Ji, (i)

S W(k) =7z), (39)

Ay
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for integers [, i,, i,,...,i; > 1 and indices i, i, . . . , ;, its integration
(itsigs i) T i i)
FPEE i@ = [P ) du, (40)
and its differentiations

i i,0p, ..., i ai i,00, .0, i .
SPGN@ = [P @9@)] fori=0.1, (1)
In fact, using the operators .¥ and , sz’l i ff:::i;l)’“)(z) and QEf’] v fj,':,'i’f)’“‘)(z) defined in (24) and (25) under the
BSM can be expressed as i

R(P]ql’z, ~-'317:)(Z) = eY(lu(m,!’z,~-~',17_v))(z) and Q(PI’IJ’Z"""[’Y)(Z) — —925(1)(M(p|’p2’”'.’pY))(Z).

(i1,igs« v ol (i1,00y« v yig) (i1,iny -« - siy) (i1s0ny « -+ siy)

In the following theorem, we explicitly derive Q,(z) for k € N in terms of J IR il)(z), LY(P(’A"’A2 """ il))(z),

o ) (0, .y i) (LTS CT i)
and Qﬁ"(P((i’l"’iz’_'.'_"’;,’)))(z), which immediately leads to the general expansion formula of the discretely monitored
Asian option price under the general diffusion model.
THEOREM 4.1. Assuming the existence of bounded derivatives of all orders for the drift and volatility func-
tions u(-) and o (-) as well as o(sy) # 0, then the asymptotic expansion (13) holds as A — 0. The coefficients
Q,(z) can be expressed explicitly as

Oy(2) =zN(2) + ¢(2) — z,

W (2) =

LS 3 (G TP @)]

o (50)Y 15 =i

B NG 5 e o)

[OA Y . . . .
122, (1, (i, gy e ooy i)s ( O)Y liyll=ji+1, ..ol ll=j+1 5 Nr=1
s s ees i) € Ty

forany k>1, (42)
piv ) () and W(-) are defined in (34), (36), (38), (39), (40), and (41),

> (i, .0y

where &, C;(sp),
respectively.

ProoE. See Appendix B.

To explicitly calculate the expansion pricing formula (13) or equivalently €, (z) in (42) for k € N, the cru-
cial step is to explicitly compute P((i'l‘y’ilz”"."',}zl)(Z), 5 (P((il,l,’il;,’,','f,}l,l))(Z) and 9’ (P((illl,’i,;,’......,’ii,))(Z) defined in (39), (40)

and (41), respectively. In §§4.1-4.3, we shall provide a systematic method to achieve this objective.

4.1. Computing the conditional expectation P((iil,}iz,’f.'.',}jl)(Z) in (39). Note that (39) is a novel type of
iterated-integral-related conditional expectation because on the one hand, the involved iterated Stratonovich inte-
grals have different upper limits, and on the other hand, the condition is path dependent. Iterated stochastic
integrals have been playing an important role in (both theoretical and applied) probability and stochastic mod-
eling; see, e.g., Kloeden and Platen [37], Kunitomo and Takahashi [41], Nualart [50], Peccati and Taqqu [51],
and Yoshida [65]. However, most existing computational methods for iterated-integral-related conditional expec-
tations are usually devoted to the simpler case where iterated integrals have the same upper limits and are
conditional only on the value of the underlying Brownian motion at the time of the upper limit.

One theoretical contribution of our paper is to develop a systematic method to explicitly calculate this novel
type of iterated-integral-related conditional expectation (39). To begin with, we apply the law of iterated condi-
tioning to obtain that

B 14,

If we can show that the inside conditional expectation is a multivariate polynomial in W(1), W(2), ..., W(m),
then the conditional expectation (39) can be simply represented as a linear combination of conditional cross-
moments M((fl’ o 2".'_','l.;fd‘)(z) defined in (23). Indeed, suppose it can be shown that

W), WQ),..., W(m)>

i W(k)= yz]. (43)

E(H (i)

w(),..., W(m)) = Y cn,ny,...,n,)W()"W(2)", ..., W(m)", (44)

ny,ny, ..., n,

Ay
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with coefficients ¢(n,, n,, ..., n,,) for nonnegative integers n,, n,, . .., n,. It follows that

E(]ﬁ1 J; (i)

é W(k) = yz)

> celny,ny,. .., nm)E|:W(1)”‘W(2)”2, e, W(m)'

i W(k) = YZ]

ny,ny, ..., n,, k=1

= 3 c(ny,ny...,n)EB(V2B)",. .., (mB,)" | Zy=7z)
ny,Ng, ..., ny,

= ¥ |:c(n1, Ny, ... ,n,,,)(l‘[ i”"/z) M(<{gf?j,',;,5'”'ll>(z)], (45)
LIRS i=1

where the second equality holds because of the definition of B, in (4).

REMARK 4.2. Interestingly, (45) implies that M((l’l’ L 2.’.'.',};3%)(1) is a fundamental building block of the com-

putations of the expansion pricing formulas not only under the BSM but also under the general diffusions.
Moreover, (45) also reflects how the computations under the general diffusions generalize those under the BSM.

As discussed in Lemma 3.1 and Remark 3.1, M((l"y‘z’."‘z."‘,;l‘)’"”’)(z) can be explicitly calculated via any symbolic
computation package such as Mathematica. Therefore, what is left is to

(I) show (44) really holds, i.e., the LHS of (44) is a multivariate polynomial of W(1), ..., W(m); and

(IT) study how to compute the coefficients c(n,, n,, ..., n,) in (44) explicitly.

First, applying the general recursion algorithm in (2.34) of Kloeden and Platen [37], we can convert each
iterated Stratonovich integral J; (i,) on the LHS of (44) to a linear combination of iterated Itd integrals. Thus,
by such a conversion algorithm and interchanging the order of multiplication and summation, we have that

lj LG)=T1X56)=" > [l&G). (46)

r=1j, (ki.ky, ooy k) r=1

where the summations are taken over all patterns of the indices resulted from the related conversions, and [;(¢)
denotes the iterated Itd integral

roen I
Roy= [ [T W )W () dW, ().
We demonstrate this conversion procedure (46) through a representative example in Appendix C. In general

cases, the conversion can be done via Mathematica systematically; see Kloeden and Platen [37] for more details.
Accordingly, to evaluate the LHS of (44) it suffices to explicitly compute

E(H 1 (i)

W) =w,WQ2)=w,,...,W(m)= wm>.
To this end, we intend to remove the condition by constructing a multiply pinned Brownian motion {7/ (t),
0 <t < m} such that for any w;, w,,...,w, €R,

(W@, 0<t<m}={w@) | WD) =w,,...,W(m)=w,,0<t<m}.

Indeed, such a multiply pinned Brownian motion can be obtained by generalizing the construction of Brownian
bridge (see, e.g., Shreve [56]). Specifically, let {B(#): 0 <t < m} be a standard Brownian motion, and define
w, :=0. Then {7 (¢),0 <t < m} can be constructed as

m—1

W(t)= Z l(i,iﬂ)(t){wi(l —t4+D)+w, (t—i)+ [%(r) —BA)—(—D(BGE+1)— %(i))]}. 47

It follows that

E (H 1 i)

W)y =uw,..... W(m):wm) =E(]f[1 jkr(i,)>, (48)
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where
L oeh [
Ji(1) = dw, (t,),....dW, (t,)dW, (t,), 49
= [ [ [T, () W, (1) (49)

with W, (1) =W (¢) and W (1) =1.

Plugging (47) into (49) and using the fundamental properties of It6 calculus, we can calculate E(]’_, Fy (i)
explicitly, which leads to a multivariate polynomial in w,, w,, ..., w,. Then the LHS of (44) must be a mul-
tivariate polynomial in W (1), W(2),..., W(m), and its explicit expression follows immediately from explicit
expressions of E(]._, Jx (i,)) and the conversion procedure (46). By (45) we obtain the explicit expression
of PUviz- il) (z) in (39). Without loss of generality, we illustrate the above road map through a representative

(TR
examf)fe in Appendix C. In general cases, such a calculation procedure can be implemented symbolically.

4.2. Computing .7(P"> i’))(z) in (40) and %/ (PS> i’ ')(z) in (41). Assume that applying the method

[CT A (iydns ..

in §4.1 has yielded an explicit expression (45) for plri-- i’)(z). By (45) we conclude that the calcula-

(0, .y i)

tion of j(P((ii"izj"i’f’))(z) and (P2 ~)(7) is reduced to the computation of f(M((ln‘znzm)n’))(z) and

ip) ip.i, ..., i)

g, ..
Gt (M((lnlzﬂzm) ,nan))(Z). We know from Lemma 3.1 that . ( M((lnlznzm) ,nm)) (2) s a polynomial in 2. Assume
(ny.ny, ..., ny) . " .
M5 () =) a,
j=0

where n:=n; +---+n, and, as discussed in §2, the coefficients a; can be obtained explicitly. Then, similarly
to Lemma 3.3 under the BSM, we can obtain by Lemma 3.2 that

j(M((ii,l,’iiz .......... i i’)))(z) = ;)ajpj(z) (50)
=
SBMGE D =0 L@ =T, ¥ g0, (s1)
RPN ; = dzi P A (Gj—i+D)!

where C! =i!/(1!(i —1)!) and ¢ (z) is the Ith derivative of ¢(z) given by

¢V (2) = (=1)'H(2)$(2)

with H,(z) denoting the Hermite polynomial of order /. Since the Hermite polynomial has a closed-form expres-
sion H,(x) =1! Z,V:/éj ((=1)7/(r!(I—=2r)!))(2x)'">" with | x| defined as the largest integer no greater than x, we

can obtain an explicit expression for QB"(M((;II,}’; """""""" . l/’)) )(2).

4.3. A systematic method for computing the expansion pricing formula up to an arbitrary order under
general diffusions. Summarizing the analysis above leads to the following systematic algorithm for computing
the expansion pricing formula up to an arbitrary order, say the Jth-order (J > 1), under general diffusions. This
systematic algorithm can be implemented via any symbolic computation package such as Mathematica.

Step 1. Computing M((I",l ______ i ,’l')l'”)(z) involved in (45) by Lemma 3.1.
21 (2) involved

Dy ey 1

ny, ..., n

Step 2. Substituting M((] ..... m)"‘)(z) obtained in Step 1 into (45), we can obtain P((iill,}
in (42), where the coefficients c(n,,...,n,,) are derived by (46), (48), and (49). o
Step 3. Plugging P> 0(z) obtained in Step 2 into (50) and (51) yields .7(PY">~!)(z) and

2 3. Pl i, i) Groigs - oip)
PP 1)) (2) involved in (42).

Step 4. Computing Ci(s,) involved in (42). S

Step 5. Substituting P((i'l"’i’;’"'_'."’ii’))(z), f/’(P((i’]"’i’;‘.'_';’ii’)))(z), 95[(P((illl,’il;,’ff.',}l,l)))(Z) and Cj(s,) obtained in

Steps 2—4 into (42) gives the general coefficient Q,(z) for k=0,1,...,J
Step 6. Given Q,(z) for k=0,1,...,J, the expansion pricing formula up to the Jth-order follows
immediately from (13).

Ay



Downloaded from informs.org by [222.29.93.10] on 09 April 2015, at 22:58 . For personal use only, all rights reserved.

RIGHTS

Cai, Li, and Shi: Pricing Discretely Monitored Asian Options in Diffusion Models
802 Mathematics of Operations Research 39(3), pp. 789-822, ©2014 INFORMS

4.4. Explicit expansion pricing formulas up to the third order. From the general algorithm presented

in §4.3, we can see that the key step is to derive P((lll'l:li’)) (z) involved in (42). For illustration, in this subsection
we provide the explicit expressions of P((il]l,!il;,’......,’ii’)(Z) that are required for the computations of Q,(z), Q,(z), and

Q5(z), leading to a closed-form expansion pricing formula up to the third order. (For these first three correction
terms, the explicit computation can be done either simply by hand or by a Mathematica program following the
general algorithm in §4.3.) More precisely, from (42) in Theorem 4.1 we obtain

m 1

%) = L 555 [Cot T EE + () T B E) (52)
0,(z) = i ﬁo)y[c(o, 1)(So)j(P(((;?1))(Z) + C(1,0)(So)j(P((li?0))(Z) + C(l, 1,1)(50)3(])((31, 1))(2)]

1 Ly i i
+§ Z (—) [C(O)(So)C(O)(So)P((((l)j,z(())))(Z)+2C(0)(S0)C(1,1)(S0)P(((<l)§,“()1,1))(1)

i, ir=1 O-(SO)’}/ .
+ C, 1) (59)Ci, 1)(50)P(((li:llz)),(1, 1) (Z)]¢(Z) (53)
" 1 i i i
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The following lemma provides explicit expressions of P!> fl) (z) involved in (52), (53), and (54).

(i, .. i
LEMMA 4.2. The involved conditional expectations P((ii]',’iiz”_'.'_"’ii’)) (z) in (52), (53), and (54) are explicitly given
as follows in terms of conditional cross-moments M((l.’: e 2".'.','1.5“)(2) defined in (23):
Those involved in Q,(2):
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i 2 i i
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Proor. See Appendix C.

5. Numerical examples. This section illustrates the numerical performance of our closed-form expansion
formulas up to the third order under several one-dimensional diffusion models, including the BSM, the CIR
model, the general CEV model, and the Brennan-Schwartz process. Note that these tested models encompass not
only diffusion models that satisfy the regularity conditions, e.g., the BSM and the Brennan-Schwartz process,
but also those that violate the conditions such as the CIR model and the general CEV model. However, we can
see that in comparison with the benchmarks existing in the literature or obtained via Monte Carlo simulation,
our numerical method is consistently accurate, efficient, and robust in all of these models.

All the computations in the numerical parts of this paper are conducted on a desktop computer with 2.85 GB
of RAM and an Intel Core i5-2500 (3.3 GHz) processor.

5.1. The BSM. Table 2 gives numerical results of prices, deltas, and gammas (denoted by “AE”) of dis-
cretely monitored Asian options under the BSM via our asymptotic expansion formula up to the third order. We
let the strike K vary from 80 to 120 with increment 5 and consider two different monitoring frequencies, monthly
(m =12) and daily (m = 250). It can be seen that all the AE results stay within the 95% confidence intervals
of the Monte Carlo simulation results (denoted by “MC”). The average of (absolute values of) absolute errors
for prices, deltas, and gammas are 0.00132, 0.00003, and 0.00028, respectively, when m = 250, and 0.00358,
0.00022, and 0.00032, Respectively, when m = 12. This implies that our method is accurate and robust in that it
performs well for a wide range of strikes and even for seemingly long monitoring intervals such as At =1/12,
i.e., the monthly monitored case. Besides, to generate one AE result of price, delta, and gamma, it takes only
approximately 0.002, 0.05, and 0.07 seconds, respectively, when m = 12, and 0.13, 0.30, and 0.45 seconds,
respectively, when m = 250. It is worth mentioning that the CPU times reported in this paper correspond to the
numerical calculations given that the coefficients of the expansion have been precomputed. Otherwise, it would
be computationally expensive to recompute the expansion formula.

Figure 1 demonstrates how the expansion formulas converge across the strikes as the number of correction
terms increases in all six cases of Table 2, namely, for prices, deltas, and gammas with m =12 and m = 250,
respectively. It suggests that our expansion formulas converge quite fast so that the results up to the third order
have achieved a high accuracy.

We also compare our asymptotic expansion numerical results with those obtained through other existing
methods in the literature, including the recursive integration method by Fusai and Meucci [24], the maturity-
randomization-based recursive method by Fusai et al. [25], and an improved convolution pricing algorithm by
Cerny and Kyriakou [15]; see Tables 3, 4, and 5, respectively. We find that all the absolute errors between our AE
results and the 30 benchmarks are no greater than 0.003 (the average error is 0.00151). It is worth pointing out
that these benchmarks consist of various parameter settings, including different monitoring frequencies such as
daily, weekly, and monthly, different model parameters such as interest rate and volatility, and different contract
parameters such as the strike. Therefore, Tables 3—5 also imply that our pricing method is accurate and robust.

Ay
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TABLE 2. Prices, deltas, and gammas of discretely monitored Asian options under the BSM. Parameters are r = 0.05, o =0.3, S, = 100,
and T = 1. The columns “AE” denote our asymptotic expansion results up to the third order, and the columns “MC” and “Std. err.” denote
Monte Carlo simulation estimates and associated standard errors obtained by simulating 1,000,000 sample paths. “Abs. err.” is the absolute
error between “AE” and “MC.” We can see all the AE results lie in the 95% confidence intervals of the associated MC estimates even in
the case of quite small m = 12. Besides, to generate one AE result of price, delta, and gamma via our method, it takes only approximately
0.002, 0.05, and 0.07 seconds respectively when m = 12, and 0.13, 0.30, and 0.45 seconds, respectively, when m = 250.

m =250 m=12

K AE MC Std. err. Abs. err. AE MC Std. err. Abs. err.

Prices of discretely monitored Asian call options under the BSM

80 21.90348 21.90509 0.00180 —0.00161 21.85858 21.86143 0.00169 —0.00285
85 17.72261 17.72419 0.00268 —0.00158 17.65195 17.65537 0.00256 —0.00342
90 13.94619 13.94775 0.00359 —0.00156 13.85170 13.85599 0.00348 —0.00429
95 10.66810 10.66958 0.00438 —0.00148 10.55718 10.56157 0.00428 —0.00439
100 7.93672 7.93805 0.00493 —0.00133 7.81970 7.82374 0.00484 —0.00404
105 5.74995 5.75069 0.00519 —0.00074 5.63691 5.64012 0.00511 —0.00321
110 4.06364 4.06453 0.00517 —0.00089 3.96220 3.96543 0.00509 —0.00323
115 2.80720 2.80835 0.00490 —0.00115 2.72161 2.72514 0.00483 —0.00353
120 1.89964 1.90117 0.00447 —0.00153 1.83112 1.83440 0.00440 —0.00328
Deltas of discretely monitored Asian call options under the BSM
80 0.94898 0.94891 0.00012 0.00007 0.91759 0.91758 0.00017 0.00001
85 0.85677 0.85679 0.00022 —0.00002 0.86045 0.86079 0.00022 —0.00034
90 0.77658 0.77661 0.00026 —0.00003 0.77939 0.77966 0.00026 —0.00027
95 0.67830 0.67832 0.00028 —0.00002 0.67937 0.67936 0.00028 0.00001
100 0.57032 0.57034 0.00029 —0.00002 0.56931 0.56895 0.00029 0.00036
105 0.46205 0.46207 0.00030 —0.00002 0.45917 0.45867 0.00030 0.00050
110 0.36145 0.36147 0.00031 —0.00002 0.35729 0.35742 0.00031 —0.00013
115 0.27379 0.27381 0.00031 —0.00002 0.26905 0.26922 0.00031 —0.00017
120 0.20140 0.20145 0.00031 —0.00005 0.19667 0.19688 0.00031 —0.00021
Gammas of discretely monitored Asian call options under the BSM
80 0.00730 0.00764 0.00024 —0.00034 0.00719 0.00719 0.00023 0.00000
85 0.01175 0.01176 0.00031 —0.00001 0.01181 0.01206 0.00031 —0.00025
90 0.01628 0.01621 0.00037 0.00007 0.01652 0.01687 0.00038 —0.00035
95 0.01989 0.02030 0.00043 —0.00041 0.02028 0.01988 0.00042 0.00040
100 0.02193 0.02246 0.00046 —0.00053 0.02234 0.02204 0.00046 0.00030
105 0.02217 0.02217 0.00047 0.00000 0.02251 0.02174 0.00047 0.00077
110 0.02085 0.02056 0.00046 0.00029 0.02105 0.02145 0.00047 —0.00040
115 0.01844 0.01790 0.00044 0.00054 0.01850 0.01848 0.00045 0.00002
120 0.01551 0.01582 0.00042 —0.00031 0.01544 0.01585 0.00042 —0.00041

TaBLE 3. Comparison with numerical results obtained by Fusai and Meucci [24]. Other parameters are S, = 100,
r=0.0367, 0 =0.17801, and T = 1. The column “AE” represents our asymptotic expansion results up to the third order,
and the column “Fusai and Meucci” is taken from Table 5 in Fusai and Meucci [24].

m K AE Fusai and Meucci Abs. err.

Comparison with numerical results in Fusai and Meucci [24]

12 90 11.90363 11.90497 —0.00134
100 4.88072 4.88210 —0.00138

110 1.36173 1.36314 —0.00141

50 90 11.93171 11.93301 —0.00130
100 4.93602 4.93736 —0.00134

110 1.40127 1.40264 —0.00137

250 90 11.93935 11.94068 —0.00133
100 4.95098 4.95233 —0.00135

110 1.41214 1.41351 —0.00137

Note that Fusai and Meucci [24], Fusai et al. [25], and Cerny and Kyriakou [15] are all focused on gen-
eral exponential Lévy models, whereas our paper deals with one-dimensional diffusion models, which are
nonexponential-Lévy except the BSM. In §§5.2 and 5.3, we shall provide numerical examples to demonstrate
our method’s performance in the nonexponential-Lévy case.

L
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FIGURE 1. Convergence of asymptotic expansions for prices, deltas, and gammas of discretely monitored Asian options under the BSM.
Parameters are r =0.05, 0 =0.3, S, = 100, and T = 1. The upper three plots correspond to m =250, whereas the lower three m = 12. The
reference true values are Monte Carlo simulation estimates obtained by simulating 1,000,000 sample paths.

TABLE 4. Comparison with three numerical results obtained by Fusai et al. [25]. Other parameters are S, = K = 100 and
T = 1. The column “AE” represents our asymptotic expansion results up to the third order, and the column “Fusai et al.”

is taken from Tables 2, 3 and 6 in Fusai et al. [25].

m r a AE Fusai et al. Abs. err.
Comparison with numerical results in Fusai et al. [25]

50 0.04 0.3 7.69712 7.69859 —0.00147

50 0.04 0.1 4.48589 4.48842 —0.00253

250 0.0367 0.17801 4.95098 4.95212 —0.00214

TABLE 5.

Comparison with numerical results in Cerny and Kyriakou [15]. Other parameters are S, = 100, r = 0.0367, o = 0.17801, and

T =1 for the left panel, and S, =100, r =0.04, m =50, and T =1 for the right panel. The columns “AE” represent our asymptotic
expansion results up to the third order, and the columns “C&K” are taken from Tables 4 and 7 in Cerny and Kyriakou [15].

Prices when m varies

Prices when o varies

m K AE C&K Abs. err. o K AE C&K Abs. err.
Comparison with numerical results in Cerny and Kyriakou [15]

12 90 11.90363 11.90492 —0.00129 0.1 90 11.57841 11.58113 —0.00272
100 4.88072 4.88196 —0.00124 100 3.33766 3.33861 —0.00095

110 1.36173 1.36304 —0.00141 110 0.27085 0.27375 0.00290

50 90 11.93171 11.93294 —0.00123 0.2 90 13.66835 13.66981 —0.00146
100 4.93602 4.93720 —0.00118 100 7.69712 7.69859 —0.00147

110 1.40127 1.40252 —0.00125 110 3.89489 3.89639 —0.00150

250 90 11.93935 11.94056 —0.00121 0.3 90 17.19090 17.19239 —0.00149
100 4.95098 4.95216 —0.00118 100 12.09000 12.09153 —0.00153

110 1.41214 1.41337 —0.00123 110 8.31281 8.31441 —0.00160
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TABLE 6. Comparison with numerical results in Ju [34]. The parameters are the same as in Table 4 in Ju [34], i.e., S, = 100, r =0.09 and
T =3. The column “Ju” obtained by Ju’s Taylor expansion method up to the sixth order is taken from Table 4 in Ju [34], and the column
“AE” denotes our asymptotic expansion results up to the sixth order. The columns “MC” (Monte Carlo simulation estimates) and “Std. err.”
(standard errors) are also taken from Table 4 in Ju [34]. “Abs. err. of AE” (respectively, “Abs. err. of Ju”) is the absolute error between
“AE” (resp., “Ju”) and “MC.” Following Ju [34], we also use the root of mean-squared error (RMSE) to measure the overall accuracy for
a whole set of options, and the maximum absolute error (MAE) to indicate the worst case. We can see that our method produces more
accurate results than Ju’s because our RMSE and MAE are both smaller than Ju’s. Besides, it takes 0.1 seconds to generate one AE result.

(0,K) AE Ju MC Std. err. Abs. err. of AE Abs. err. of Ju

Comparison with numerical results in Ju [34]

(0.05,95) 15.0951 15.1197 15.1199 0.0002 —0.0248 —0.0002
(0.05, 100) 11.3119 11.3069 11.3071 0.0002 0.0048 —0.0002
(0.05, 105) 7.5417 7.5562 7.5563 0.0002 —0.0146 —0.0001
(0.1,95) 15.2137 15.2165 15.2171 0.0007 —0.0034 —0.0006
(0.1, 100) 11.6349 11.6394 11.6399 0.0007 —0.0050 —0.0005
(0.1, 105) 8.3923 8.3913 8.3919 0.0007 0.0004 —0.0006
(0.2,95) 16.6366 16.6365 16.6366 0.0026 0.0000 —0.0001
(0.2, 100) 13.7691 13.7634 13.7654 0.0026 0.0037 —0.0020
(0.2, 105) 11.2176 11.2135 11.2174 0.0026 0.0002 —0.0039
(0.3,95) 19.0160 19.0179 19.0194 0.0009 —0.0034 —0.0015
(0.3, 100) 16.5882 16.5755 16.5812 0.0009 0.0070 —0.0057
(0.3, 105) 14.3789 14.3774 14.3874 0.0009 —0.0085 —0.0100
(0.4,95) 21.7338 21.7307 21.7331 0.0018 0.0007 —0.0024
(0.4, 100) 19.5788 19.5690 19.5798 0.0018 —0.0010 —0.0108
(0.4, 105) 17.6168 17.5978 17.6164 0.0018 0.0004 —0.0186
(0.5,95) 24.5577 24.5583 24.5585 0.0031 —0.0008 —0.0002
(0.5, 100) 22.6183 22.6032 22.6167 0.0031 0.0016 —0.0135
(0.5, 105) 20.8352 20.8023 20.8289 0.0031 0.0063 —0.0266
RMSE 0.0077 0.0092

MAE 0.0248 0.0266

x 1078 Absolute errors of prices vs. m

—=—K=80
——K=90
—o—K=100
—o— K=110
K=120 ||

Absolute errors
&
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-5 3
-6 . . .
50 100 150 200 250
m

FIGURE 2. How the absolute errors (between the prices obtained via our expansion formula up to the third order and the benchmark
computed through Monte Carlo simulation) change as m varies in the cases of in the money (K = 80 and 90), at the money (K = 100), and
out of the money (K = 110 and 120). Parameters are » = 0.06, o =0.2, S, = 100, and A = 1/250. We can see that the absolute errors tend
to increase as m rises.

Besides, we compare our numerical results with those obtained via the Taylor expansion method (up to the
sixth order) under the BSM by Ju [34]. See Table 6. Following Ju [34], we also use the root of mean-squared
error (RMSE) to measure the overall accuracy for a whole set of options, and use the maximum absolute error
(MAE) to indicate the worst case. It can be seen that our expansion formula up to the sixth order can produce
more accurate numerical results than Ju’s expansion method up to the sixth order because our RMSE and MAE
are both smaller than Ju’s. It is worth pointing out that the parameters used in Ju [34] are not that usual. For
example, the risk-free interest rate is 9%; the maturity is three years; the volatility can be as small as 0.05.
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TABLE 7. Prices and deltas of discretely monitored Asian options under the Brennan-Schwartz process. Parameters are r =0.05, k = 0.1,
n =120, 0 =0.25, S, =100, and T = 1. The columns “AE” represent our asymptotic expansion results up to the third order, and the
columns “MC” and “Std. err.” denote Monte Carlo simulation estimates and associated standard errors obtained by simulating 200,000
sample paths. “Abs. err.” is the absolute error between “AE” and “MC.” We can see that all the AE results lie in the 95% confidence
intervals of the associated MC estimates. In addition, to generate one AE result of price and delta, it takes approximately 0.001 and 0.002
seconds respectively when m = 12, and 0.1 and 0.2 seconds, respectively, when m = 250.

m =250 m=12

K AE MC Std. err. Abs. err. AE MC Std. err. Abs. err.

Prices of discretely monitored Asian call options under the Brennan-Schwartz process

80 20.13363 20.13789 0.00242 —0.00426 20.10687 20.10805 0.00224 —0.00118
85 15.75659 15.76048 0.00411 —0.00389 15.70458 15.70572 0.00389 —0.00114
90 11.79768 11.79996 0.00604 —0.00228 11.71851 11.71667 0.00583 0.00184
95 8.42197 8.41832 0.00775 0.00365 8.32298 8.32048 0.00756 0.00250
100 5.72567 5.72168 0.00881 0.00399 5.62035 5.62267 0.00862 —0.00232
105 3.71040 3.70959 0.00903 0.00081 3.61241 3.6199%4 0.00884 —0.00753
110 2.29709 2.29621 0.00850 0.00089 2.21557 2.22243 0.00830 —0.00686
115 1.36297 1.36258 0.00745 0.00039 1.30124 1.30592 0.00725 —0.00468
120 0.77865 0.77857 0.00616 0.00008 0.73563 0.74014 0.00596 —0.00451
Deltas of discretely monitored Asian call options under the Brennan-Schwartz process
80 0.87182 0.87230 0.00052 —0.00049 0.87482 0.87515 0.00050 —0.00033
85 0.82117 0.82232 0.00071 —0.00115 0.82508 0.82616 0.00069 —0.00107
90 0.73757 0.73855 0.00091 —0.00099 0.74098 0.74227 0.00090 —0.00128
95 0.62515 0.62634 0.00106 —0.00119 0.62657 0.62694 0.00106 —0.00037
100 0.49754 0.49694 0.00114 0.00060 0.49627 0.49486 0.00113 0.00142
105 0.37177 0.37112 0.00112 0.00065 0.36822 0.36790 0.00112 0.00032
110 0.26156 0.26110 0.00104 0.00046 0.25678 0.25733 0.00103 —0.00055
115 0.17391 0.17305 0.00091 0.00086 0.16898 0.16859 0.00090 0.00039
120 0.10957 0.10961 0.00076 —0.00004 0.10521 0.10593 0.00075 —0.00072

In fact, for more usual parameters, our expansion formula up to the third order usually has achieved a high
accuracy.

To illustrate the effect of the number of monitoring intervals m on the accuracy of our asymptotic expansion
method, we fix A =1/250 and let m vary from 50 to 250 with increment 50. Figure 2 demonstrates how the
absolute errors (between the prices obtained via our expansion formula up to the third order and the benchmark
computed through Monte Carlo simulation) change as m varies in the cases of in the money (K = 80 and 90),
at the money (K = 100), and out of the money (K = 110 and 120). We can see that the absolute errors tend to
increase as m rises.

5.2. The Brennan-Schwartz process. Table 7 provides numerical results of prices and deltas (denoted by
AE) of discretely monitored Asian options under the Brennan-Schwatz process (specified in Table 1) via our
asymptotic expansion formula up to the third order; see, e.g., Pilipovic [52] for the applications of the Brennan-
Schwatz process in financial modeling of the commodity market. We can see that all the AE results stay within
the 95% confidence intervals of the Monte Carlo simulation results (denoted by MC). The average of (absolute
values of) absolute errors for prices and deltas are 0.00225 and 0.00071, respectively, when m = 250, and
0.00362 and 0.00072, respectively, when m = 12. In addition, to generate one AE result of price and delta, it
takes approximately 0.001 and 0.002 seconds, respectively, when m = 12, and 0.1 and 0.2 seconds, respectively,
when m = 250. Similarly to Figure 1, Figure 3 indicates that our expansion formulas converge quite fast as the
number of correction terms increases in all four cases of Table 7.

5.3. The general CEV model. The CEV model (specified in Table 1) is a very important asset pricing
model. On the one hand, it includes several well-known models as special cases, e.g., the BSM (8 =0) and the
CIR model (8= —1/2). On the other hand, the flexibility of the selection of 3 makes it capable of modeling the
volatility smile effect in the equity index option market (see Jackwerth and Rubinstein [33]). Furthermore, some
novel financial models derived from the CEV model have also won great popularity in the financial industry.
For example, the jump to default extended CEV model proposed by Carr and Linetsky [13] unifies the valuation
of credit derivatives and equity derivatives (see also Mendoza-Arriaga and Linetsky [49]), and the stochastic
alpha-beta-rho (SABR) model proposed by Hagan et al. [30] is able to provide good fits to various types of
implied volatility curves observed in the marketplace.

Ay
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Brennan-Schwartz model with m = 250 Brennan-Schwartz model with m = 250
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FIGURE 3. Convergence of asymptotic expansions for prices and deltas of discretely monitored Asian options under the Brennan-Schwartz
process. Parameters are » =0.05, k =0.1, u =120, 0 =0.25, §, =100, and T = 1. The reference true values are Monte Carlo simulation
estimates obtained by simulating 200,000 sample paths.

It is worth pointing out that option pricing under the CEV model needs to be dealt with carefully. Specifically,
when 3 > 0, the discounted CEV process is a strict local martingale, and when 83 < 0, the CEV process has
a killing boundary at zero (zero is either an exit boundary when 8 € [—1/2,0), or is a regular boundary
when B8 < —1/2 and is then specified as a killing boundary by adjoining a killing boundary condition) and
the transition density is norm defective. To deal with these two issues, one can regularize the CEV process to
achieve bounded volatility by “freezing” the volatility for the stock prices above certain high level and below
certain low level, respectively. For more details, we refer to, e.g., Emanuel and MacBeth [20], Andersen and
Andreasen [2], Davydov and Linetsky [18], Carr and Linetsky [13], and Lewis [43]. It turns out that in either
case, our asymptotic expansion produces approximations to the Asian option prices for the aforementioned
“regularized” CEV process with bounded volatility. See Appendix E for more detailed discussions.

Since the BSM, a special case of CEV with 8 =0, has been discussed extensively in §5.1, we concentrate
on three other cases of CEV with B8 equal to 1/4, —1/4, and —1/2 (CIR), respectively. It turns out that for all
these three cases, our asymptotic expansions up to the third order are accurate and efficient for both prices and
Greeks such as deltas. Indeed, Table 8 indicates that all the prices and deltas lie in the 95% confidence intervals
of associated Monte Carlo simulation estimates, and the average errors of prices and deltas are 0.00931 and
0.00074, respectively. Similarly to the case of the BSM, our method remains efficient and it takes approximately
0.2 seconds (0.4 seconds, respectively) to produce one numerical result of the price (the delta, respectively).
Moreover, our method is quite robust because it performs consistently well across various strikes K and elas-
ticities B. Similarly as in §§5.1 and 5.2, Figure 4 demonstrates that our expansion formulas under general CEV
models converge quite fast.

Note that our expansion method can also deal with European options that correspond to the special case m = 1
of the discretely monitored Asian options. Table 9 reports the European option prices and deltas obtained via
our expansion method as well as the analytical formula (see, e.g., (32) in Davydov and Linetsky [18]) under
the CEV model. We can see that our method is accurate with the average errors of prices and deltas being
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TaBLE 8. Prices and deltas of discretely monitored Asian options under the CEV model with 8 =1/4, —1/4, and —1/2 (CIR model).
Parameters are r =0.05, S, = 100, 555 =0.25, T =1, and m =250. The columns “AE” represent our asymptotic expansion results up to
the third order, and the columns “MC” and “Std. err.” denote Monte Carlo simulation estimates and associated standard errors obtained by
simulating 2,000,000 sample paths for prices and 200,000 sample paths for deltas. “Abs. err.” is the absolute error between “AE” and “MC.”
We can see all the AE results lie in the 95% confidence intervals of the associated MC estimates. Besides, it takes around 0.2 seconds
(0.4 seconds, respectively) to produce one numerical result of the price (the delta, respectively).

Prices Deltas

K AE MC Std. err. Abs. err. AE MC Std. err. Abs. err.

Discretely monitored Asian call options under the CEV model with 8= 1/4

80 21.60167 21.61365 0.01000 —0.01198 0.94653 0.94600 0.00059 0.00053
85 17.18468 17.19687 0.00967 —0.01219 0.89976 0.89929 0.00078 0.00047
90 13.15550 13.16780 0.00909 —0.01230 0.81995 0.81994 0.00098 0.00001
95 9.67509 9.68666 0.00826 —0.01157 0.71007 0.71048 0.00116 —0.00041
100 6.84034 6.85112 0.00726 —0.01078 0.58252 0.58365 0.00126 —0.00113
105 4.66083 4.66997 0.00617 —0.00914 0.45335 0.45362 0.00127 —0.00027
110 3.07180 3.07792 0.00510 —0.00612 0.33614 0.33723 0.00122 —0.00109
115 1.96653 1.96998 0.00413 —0.00345 0.23873 0.23727 0.00111 0.00146
120 1.22841 1.23003 0.00327 —0.00162 0.16335 0.16206 0.00097 0.00129
Discretely monitored Asian call options under the CEV model with 8= —1/4
80 21.67122 21.68465 0.00971 —0.01343 —0.93506 0.93460 0.00054 0.00046
85 17.28990 17.30278 0.00933 —0.01288 0.88533 0.88540 0.00073 —0.00007
90 13.26903 13.28168 0.00872 —0.01265 0.80568 0.80598 0.00093 —0.00030
95 9.75397 9.76576 0.00787 —0.01179 0.69779 0.69856 0.00109 —0.00077
100 6.84853 6.85961 0.00684 —0.01108 0.57141 0.57236 0.00118 —0.00095
105 4.58662 4.59619 0.00573 —0.00957 0.44099 0.44145 0.00119 —0.00046
110 2.92962 2.93639 0.00462 —0.00677 0.32057 0.32173 0.00112 —0.00116
115 1.78606 1.79026 0.00360 —0.00420 0.21979 0.21879 0.00100 0.00100
120 1.04072 1.04369 0.00273 —0.00297 0.14247 0.14132 0.00085 0.00115
Discretely monitored Asian call options under the CIR model, i.e., the CEV model with 8= —1/2
80 21.71428 21.72781 0.00958 —0.01353 0.92843 0.92810 0.00053 0.00033
85 17.34831 17.36129 0.00918 —0.01298 0.87747 0.87767 0.00071 —0.00020
90 13.32877 13.34152 0.00855 —0.01275 0.79806 0.79859 0.00090 —0.00053
95 9.79478 9.80661 0.00770 —0.01183 0.69126 0.69242 0.00106 —0.00116
100 6.85365 6.86478 0.00666 —0.01113 0.56562 0.56685 0.00114 —0.00123
105 4.55096 4.56065 0.00553 —0.00969 0.43478 0.43547 0.00115 —0.00069
110 2.86119 2.86827 0.00441 —0.00708 0.31297 0.31387 0.00108 —0.00090
115 1.70087 1.70538 0.00338 —0.00451 0.21070 0.20992 0.00095 0.00078
120 0.95542 0.95870 0.00250 —0.00328 0.13268 0.13161 0.00079 0.00107

0.00932 and 0.00072, respectively. Besides, it takes approximately 0.002 seconds (0.003 seconds, respectively)
to generate one numerical result of the price (the delta, respectively).

Under the CIR model, Fusai et al. [26] derived a recursion-based analytical expression for the moment
generating function of the joint distribution of the spot price’s terminal value at maturity and its discretely
monitored average. Then applying the Fourier inversion algorithm, they can price discretely monitored Asian
options numerically in a fast way. Table 10 presents a comparison between our asymptotic expansion results
with those obtained via Fourier inversion in Fusai et al. [26]. It can be seen that our results are very accurate
because the absolute errors are no greater than 0.00002.

6. Concluding remarks. In this paper, a closed-form asymptotic expansion approach is proposed to price
discretely monitored Asian options in one-dimensional diffusion models. We show the convergence of the
expansion rigorously under some regularity conditions and moreover, develop a systematic method for the
purpose of calculating general expansion terms. Numerical experiments suggest that our expansion method with
only a few terms (e.g., four terms up to the third order) is accurate, fast, and easy to implement for a wide
range of diffusion models. Potential future research topics include the extensions of our expansion method
to time-dependent one-dimensional diffusions, multidimensional diffusions, or nonuniform discrete structures.
One may first generalize our approach for time-independent one-dimensional diffusions to the time-independent
multidimensional case. Then the time-dependent one-dimensional diffusion might be dealt with as a special
time-independent two-dimensional diffusion. As regards the nonuniform discrete structure, one potential idea is
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TABLE 9. Prices and deltas of European call options under the CEV model with 8 =1/4, —1/4, and —1/2 (CIR model). The parameters
are the same as in Table 8. The columns “AE” represent our asymptotic expansion results up to the third order, and the columns “True
value” are obtained from the analytical formula (see, e.g., Davydov and Linetsky [18]). “Abs. err.” denotes the absolute error between “AE”
and “True value.” We can see our expansion method is quite accurate. Besides, it takes around 0.002 seconds (0.003 seconds, respectively)
to produce one numerical result of the price (the delta, respectively).

Prices Deltas

K AE True value Abs. err. AE True value Abs. err.

European call options under the CEV model with 8 =1/4
80 25.27467 25.28380 —0.00913 0.89921 0.89897 0.00024
85 21.47303 21.48223 —0.00920 0.84662 0.84633 0.00029
90 18.03386 18.04303 —0.00917 0.78389 0.78348 0.00041
95 14.98378 14.99294 —0.00916 0.71381 0.71333 0.00048
100 12.32843 12.33758 —0.00915 0.63972 0.63921 0.00051
105 10.05528 10.06444 —0.00916 0.56486 0.56439 0.00047
110 8.13829 8.14747 —0.00918 0.49205 0.49168 0.00037
115 6.54279 6.55200 —0.00921 0.42343 0.42322 0.00021
120 5.22998 5.23919 —0.00921 0.36041 0.36039 0.00002

European call options under the CEV model with = —1/4
80 25.53970 25.54908 —0.00938 0.87517 0.87681 —0.00164
85 21.72499 21.73426 —0.00927 0.82223 0.82350 —0.00127
90 18.23275 18.24296 —0.00921 0.75981 0.76065 —0.00084
95 15.09495 15.10412 —0.00917 0.69000 0.69041 —0.00041
100 12.32843 12.33758 —0.00915 0.61552 0.61555 —0.00003
105 9.93458 9.94375 —0.00917 0.53931 0.53908 0.00023
110 7.90087 7.91008 —0.00921 0.46420 0.46386 0.00034
115 6.20347 6.21276 —0.00929 0.39267 0.39235 0.00032
120 4.81063 4.82003 —0.00940 0.32661 0.32642 0.00019

European call options under the CEV model with B=—1/2
80 25.68429 25.69403 —0.00974 0.86140 0.86439 —0.00299
85 21.85874 21.86830 —0.00956 0.80844 0.81106 —0.00262
90 18.33753 18.34695 —0.00942 0.74639 0.74849 —0.00210
95 15.15501 15.16433 —0.00932 0.67700 0.67850 —0.00150
100 12.33306 12.34234 —0.00928 0.60269 0.60359 —0.00090
105 9.87961 9.88895 —0.00934 0.52623 0.52663 —0.00040
110 7.78877 7.79824 —0.00947 0.45043 0.45049 —0.00006
115 6.04236 6.05203 —0.00967 0.37788 0.37778 0.00010
120 4.61249 4.62239 —0.00990 0.31071 0.30159 0.00012

to select the smallest time step as the expansion parameter by expressing other larger time steps as (fractional)
multiples of the smallest one.
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Appendix A. Proof of Theorem 2.1.

PrROOF.  Our proof is an application of the Malliavin calculus for generalized random variables proposed in Watanabe
[64] and Yoshida [65] as well as the related theory of asymptotic expansion for option pricing established in Kunitomo and
Takahashi [42]. We employ standard notations of the Malliavin calculus (see, e.g., Ikeda and Watanabe [32], Nualart [50]).
Let Z(e) :=)"[_, Y (€), where Y, (€) is defined in (6). For any integer n € N, we have

m

Z(e):= Z Y. (€)= izjej + 0(Elz+l)’
k=1

Jj=0

(A1)
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FIGURE 4. Convergence of the asymptotic expansions for prices and deltas of discretely monitored Asian options under the CEV models
with B =1/4, —1/4, and —1/2, respectively. Parameters are r =0.05, S, = 100, SSég =0.25, T =1 and m = 250. The reference true values
for prices and deltas are Monte Carlo simulation estimates obtained by using 10,000 time steps and by simulating 2,000,000 and 200,000
sample pathes, respectively.

TABLE 10. Comparison with numerical results in Fusai et al. [26] under the CIR model. Other parameters are S, =1, r =0.04, o =0.7,
and T = 1. The rows “AE” represent our asymptotic expansion results up to the third order, and the rows “Fusai et al.” are taken from
Table 4 in Fusai et al. [26]. The rows “Abs. err.” denote the absolute errors between “AE” and “Fusai et al.” It can be seen that our results
are very accurate with absolute errors no greater than 0.00002.

Comparison with numerical results in Fusai et al. [26]
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K 0.90 0.95 1.00 1.05 1.10
m=12

AE 0.21280 0.18660 0.16283 0.14141 0.12224

Fusai et al. 0.21279 0.18659 0.16282 0.14140 0.12223

Abs. err. 0.00001 0.00001 0.00001 0.00001 0.00001
m=25

AE 0.21430 0.18811 0.16433 0.14288 0.12366

Fusai et al. 0.21428 0.18810 0.16432 0.14287 0.12365

Abs. err. 0.00002 0.00001 0.00001 0.00001 0.00001
m =150

AE 0.21502 0.18884 0.16506 0.14359 0.12435

Fusai et al. 0.21501 0.18883 0.16505 0.14359 0.12434

Abs. err. 0.00001 0.00001 0.00001 0.00000 0.00001
m =100

AE 0.21539 0.18921 0.16543 0.14396 0.12471

Fusai et al. 0.21538 0.18920 0.16542 0.14395 0.12470

Abs. err. 0.00001 0.00001 0.00001 0.00001 0.00001
m =250

AE 0.21562 0.18944 0.16566 0.14419 0.12493

Fusai et al. 0.21560 0.18943 0.16565 0.14418 0.12492

Abs. err. 0.00002 0.00001 0.00001 0.00001 0.00001
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where Z; =37} Y, ; with ¥} ; constructed from (9) and (35). Standard arguments as employed in the proof of Theorem
7.1 in Malliavin and Thalmaier [48] yield that the expansion (A1) can be interpreted in the following sense

— O(E'l+l),

n
”Z(e) —YZe
j=0 D}
for any p > 1 and s > 0, under the conditions that u(-) and o(-) have bounded derivatives of all orders and o (s,) # 0.
Here D;, denotes the space of Malliavin differentiable variables equipped with the norm

N 1/p
1Pl = | EVFI + S EIDO R, | forany £ ey,
j=1
where DUF is the jth order Malliavin derivative of F. For simplicity of notations, we use D to represent the first order
Malliavin differentiation operator D).

To prove that E[(Z(e) —z)™] admits the asymptotic expansion

E[(Z(€) = 2)"] =3 Q;(2)€' + O(e"™), (A2)
j=0
our immediate task is to verify that there exists a random sequence {7} such that the Malliavin covariance matrix X (€) :=
(DZ(€), DZ(€)) 20,77 satisfies the following two conditions:
o Uniform nondegeneracy under truncation:

sup E[1(e<;y(det(Z(e))) 7] < +o0, (A3)
e€(0,1]
o Negligible probability of truncation:
.1 1
11m—P<|7f|> 7)=0, neN. (A4)
e—0 " 2

We will employ the method developed in Kunitomo and Takahashi [41, 42] to complete the verification.
Let us verify (A3) first. Since Z(0) = )"}, W(k)/7, its Malliavin covariance can be easily obtained

| mo 2

3(0) = (DZ(0). DZO)) s = [ 10,200 ds = ["]3 102y

k=1

Define m
7 = c/ D,Z(e) — D, Z(0)| ds,
0

where ¢ > 0 is an arbitrary constant. Then we claim that there exists a constant ¢, > 0 such that for any ¢ > ¢, and any
p > 1, the condition (A3) holds. Indeed, it follows from the triangle inequality that

|(D,Z(€))* = (D,Z(0))*] < |D,Z(€) — D,Z(0)|" +2|D,Z(0)| | D, Z(€) — D,Z(0)].

On the set {n° < 1} we have

IS(6) — 3(0)] = ] [ " (D,Z(e)) ds - [ " (D,2(0)) ds

= [0,z - (0, 20)|ds

< /Om|DXZ(e) —D,Z(0)| ds + /Om 21D,2(0)||D,Z(€) — D, Z(0)| ds

172

A

/Om|DXZ(e) —D,Z(0)[ ds+ z(fom D,Z(0)2 ds) v (/Om D, Z(¢) — D, Z(0)[? ds)

1,50
C C

IA

Hence, there exists ¢, such that, for any ¢ > ¢, > 0,

Iz(e)l22(0)—|z(€)_z(0)|>2(O)_<cio+2 E(O))

Co

Thus we obtain (A3) immediately.
Next, we justify the condition (A4). The Cauchy inequality implies

m o X(k€)—s, 1
F(oXhon 1, )

ID,Z(€) — D,Z(0)]* = P
k=1 0)Y Y

2 2
" X(k,€e)— 1
sz@sw _ 71{54}) ,
k=1 €0 (sy)Y Y o
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where we use the fact that Z(e) =>;_, (X (k, €) — sy)/(€0(s5)7). Therefore,

m mooml X(k,e)—s, 1 ?
f ID.Z(€) — D,Z(0)* ds < m Zf (Ds’i‘) - 71(S<k}> ds.
0 k=1 0 EO-(SO)‘Y Y B

It follows that

1 m(  X(k,€)— 1 : 1
P |”’)E|2*> < P(/ Drw—*l{xk} ds > )
2 h 0 Y oea(sy)y 2R 2cm?

P ( [ 10 - D10 du= chmz),

Following Lemma 7.2 in Kunitomo and Takahashi [42], we conclude that for any k& = 1,2,...,m and
any neN,

lim — P(/ (D, Y, (€) — D,Y,(0))* du > A2)=0,

e—0 "

which leads to (A4) immediately. The proof is completed.

Appendix B. Proof of Theorem 4.1.

PrOOF.  Since Z, also has a standard normal distribution under the general diffusions, {(z) is the same as in the BSM.
Here we focus on the derivation of Q,(z) for k > 1. Observing that

INT(x) | 1esy. ifI=1;
axt |80 (x—2z), ifl>2,

we deduce from (33) that

“ F Lk+1
W (z) = E( >z
; =3 o (50)y
+ Z %E(é(l,z)(zo _Z) F;'l,jl-%—l Fiz,j2+1 . F}l,jl-H >
122, Gtz i), Gtoos oo J)EFE L a(s))y o(s))y  o(s)y

The involved expectations can be further expressed as

Fio ) 1 o B
E<1 Z°>"a(s0)y> = 0'(50)')’/: E(F i1 | 2o =2)¢(2) dz

and
E<5(1—2)(ZO _ Fijn By Fyjmn )
a(sp)y o(sy)y a(s))y

1 -2
<o(so)7> /8( "= 2)E(F, j1Fy jyi1 1dots, Fy iy | Zy=u)$(u) du

1 " 9(-2)
- (0(%)» 7 [ 5= TS B iy sy | 2= 0800 du
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where the second equality holds because of the integration-by-parts formula for the Dirac-delta function. Indeed, the above
calculations can be rigorously justified through Watanabe [64], which untangled the puzzle on the calculation of expectations
involving Dirac-delta functions.

It follows that

o e =271y
2@ =) | EF 120 = w)b(w) du+ D
iz o(so)y J: 1201 o) G iVEFs o (s0)y
a(l 2)
6 - Z[E( o Fy o By i |ZO=Z)¢(Z)]- (B1)
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Applying the general formula for pathwise expansion in Lemma 4.1 yields

E(F 1 1Zo=2= Y GG)EW()]Zy=2)= Y G(s)P§(2).

llill=k+1 llifl=k+1

i i
E(E'l,j]+1F;'2,j2+1" . '7F;',,j1+1 |Z():Z): Z (H Ci,(so))E<n Jir(ir) |Zo:Z>
ligll=ji+1 lill=ji+1 r=1

r=1

!
(1—[ Cir (SO)>P((izll’silzzy,':...v,itlz)) (2).
liyll=ji+1 lill=jp+1 Nr=1

Substituting the above into (B1) results in (42) immediately. O

Appendix C. Proof of Lemma 4.2.

PrOOF.  Since the calculations of these conditional expectations are quite similar, we only demonstrate how to compute

P((("{”iz)?(o, 1))(2), and others can be dealt with similarly. Following (43), we deduce that

P(((Ii:iz)?(o, 1))(2) = E<J(1,1)(i|)f(o,1)(iz)

W) = 72>
k=1

- E[E(Ja,])(mo, () | WL W), ... W(m)

Zm: W(k) = yzi|.

k=1

Converting related iterated Stratonovich integrals to iterated It6 integrals (see Kloeden and Platen [37]), we have
. i 1 . l 1 .
Tu()i= [ [Toaw(t) e dW(n) = 1o+ 5 = 7 WG

. ih pt ) i
Jou(i)i= [ [ edW(n)o diy= 1o (i) = [T W(n)di.
Thus,
i, 1 . i
P(((;,lz)?(o,l))(z):E[EW(1|)2E<fO W(t,)dt,

Applying the construction of the multiply pinned Brownian motion defined in (47) yields

E(/Oiz W(t,)dr, \ W) =w,,..., W(m) :wm> =E(/0i2 W(r) dt)

W), WQ)..... W(m))

f W (k) = yz]. (C1)
k=1

Ly |

=EX [ {wn (U= 4 k) + e (1 = k) + [5(0) = B0 = (1 = K)(Bk+ 1) = B(K))]} dr
k=0 "k

-1/ 1 k+1 . 1 B 1 . ir—1 1
=F = = B(t)dt — -B(k) — =Bk+1) )= —w;, . Cc2
(gt g+ [ O =396~ 3G +1) ) = Tt g, ©)

Then plugging (C2) into (C1), we obtain

i—1

Pl @ = ] 377 ( S wio+ 3we)

> Wk)= yz]
k=1

120 1.2 L. — (.2
=5 ,2 ll\/;M((k:il))(Z) + le\/ZM((iz’,i?)(Z)’
which completes the proof.

Appendix D. Validity of the Greeks approximation. To emphasize the dependence on the parameter s,, we express
the asymptotic expansion proposed in Theorem 2.1 as

—rT . J —
w<.§)9/(z(%)’ SO)A_//Z + O(A(J+1)/2)> with Z(So) — %,

C(A)=

where Q;(z, 5p), j=0,1,2,..., are equal to {,(z) given by (14).

As exhibited in the computational examples in §5, we approximate Greeks (price sensitivities) by directly differentiating
the expansion of option price. For example, the Jth order approximation to delta dC(A)/ds, is calculated as
9 —rT Ao J ) —rT A J ]
peti, = 2[00, 24, 4087) | = LA S et o)
S m ,

Jj=0

0 m+1 3

L
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where

’ aQ] ’ 69}
Dj(Z’ 5)i=0 (So)Qj(Zs 59) + 0 (sp) 732 (2, 50)7'(s9) + . (z,50) |- (D2)
0
The Jth order approximation to gamma d>C(A)/ds? is given by

ﬁ[ e TyvAo(s,)

7rT
y«/A
> G, A2,
952 mt 1 (2(50)- %)

Gamma; =
m+1 =

(Zn (o sa?) | =<
where

90
62050 = 0”600, zo50)+ 2060 S22 00+ 5 o))

7, am] 00,
+o(so>[( (a7 00) + 2 e so))(z G0+ D+ 52 o)’ (so)} (D3)

We set up the following proposition to clarify the validity of the above approximations.

PROPOSITION D.1.  Assume that o (sy) # 0 and the two functions w(-) and o(-) have bounded derivatives of all orders.

Forany J=0,1,2,..., the following asymptotic expansions hold in the sense of classical calculus:
aC(A e T
Detia="C8) IV (5 ), s 1 0200 ), (D4)
as, m+1 =
and

Gamma =

aZC(A) —rT.yf
ass m+l1

where D;(z, sy) and G;(z, s,) are defined in (D2) and (D3), respectively.

56, (2(s0). s0) A2 + 0<A<’+W2)) (D3)

j=0

Proor. Without loss of generality, we focus on the proof of (D4). Similar to the proof of Theorem 2.1, our argument is
based on the Malliavin calculus for generalized random variables and the related theory of asymptotic expansion established
in Watanabe [64], Yoshida [65], and Kunitomo and Takahashi [42].

To emphasize the dependence on sy, we write Z(€) in (Al) by Z(e, s,). From (7), we recall that the price of the Asian

option satisfies
e T Ao(sy)y
m+1

Thus, differentiation of the above expression yields that

aC(A) e T/ Ay
dsy,  m4+1

c(a)= E[(Z(e. ) = 2(s0) "] with 2(sp) = %

e—rT \/K,y

Delta = 1
m

o' (s0) EN(Z (€. 50) = 2(50) "]+ —— == 0 (s0) 7 E(Z(E 50) —2(50)) ™

In the proof of Theorem 2.1 in Appendix A, we have obtained (A2), i.e.,
J .
E[(Z (€. 59) = 2(50)) 1= D_ Q;(z(50) )€’ + O(”™).
j=0

On the other hand, according to Watanabe [64], we have

d ad
A (ELZ(60) = 2060 ) = B[ ity 3 206050 | = Z6OE ey o

In what follows, we will prove that

E[1{z(e.59)-220}] Z (z.50)€’ + O(e'™), (D6)
j=0
and
d ! a()'] J J+1
E 1z, s9)- >o)a Z (e, 59) Z 35 (z,50)€' +O(e"™). (D7)

The uniform nondegeneracy of Z(e, s,) allows us to apply the Watanabe-Yoshida theory (see Watanabe [64], Yoshida
[65]) to obtain an expansion for E[1 7 ;)—.0;]- Indeed, the following expansion is valid in the sense of D™, i.e.,

J
Lzt )20y = 2 Ti(2)€* + O(e’™).
k=0

L
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Here, the leading term is given by T (z) = l{z,_.>¢y and the higher order terms are given by

1 0WH(Z,)
Ty (z) = Z ETYilelYizv./z""’Yizv./l’ for k=1,

(@, (iysigs .oy i) (Jiajas o J)ES

where H(x) :=1(,_,.q is a Heaviside function and the index set ¥ is specified in (34). Thus, the theory of Watanabe-
Yoshida guarantees the validity of the following expansion:

7
E[1z¢ s)—zz0)] = 2 O, (z)€" + 0(e"™),

k=0
where
0,(z2) = ETy(z) = El[Zg—zZO] =1-N(2),
and 1 (dVH(Z)
0,(x) =ET,(z) = 3 —'E(ai,o)’imlfiz’jz,...,Y,.,’jl), for k > 1.
(L, (iysinsee s i), isas s JESk

To show (D6), we will verify that @, (z) = —dQ, /dz(z, sy). By (14), it is sufficient to show that T, (z) = —3dP,(z)/dz(z, $p)-

Indeed, it is obvious that
Dy(z)

dz

ad
To(z) = Lizy—zz0) = — (z,8) = _872(20 -2*.

For higher order terms, based on (33), we deduce that

b, (z d 1907(Z
29 e = ) e R AP
(1, (iysips -

Ax! i1 ittt izy,i1>

dz csd)s Giodseees JNEFK
10V H(Z,)
- Z I axl ilv.l'lYizv.iz""’Yizv.i;:_Tk(z)'

((NURZN i), (rsjas o os JNEFK T

Here we have used the following algebraic facts for the Heaviside function and the Dirac delta function:

9 90T(x) 9 IV H (x)

B: v op e STOMTA=mG T frl=
dd0T(x) 4 0D H (x)
9 = sy — )= 8 DN (x— )= — L) s 0,
2 aw a0 (7Y (x=2) PR

Thus, the above arguments lead to the expansion (D6).

Next, we prove (D7). Based on the theory of stochastic flows (see, e.g., Ikeda and Watanabe [32], Kunita [39]), a standard
argument as employed in the proof of Theorem 7.1 in Malliavin and Thalmaier [48] guarantees the following expansion
in D*:

iZ(e 5y) = 9 i Y. (e) = i(i iY )ej—{— o(e'™)
as, Y T as, e ¢ _j=0 =1 950 kg ’
Thus, we have that

a J ) J m a )
litesgoi 3 2(6050) = (Z T()e + O(ef“)) (Z(z T%Yk,j)ef ; 0<ef“>)

i=0 Jj=0 \k=1
7
= Y E@e + 0", (D8)
k=0
where the correction term is given by
k m
— d
2@ =210 (X 50
i=0 a=1 9%

According to Watanabe [64, Theorem 2.2], the pathwise expansion (D8) is valid in the sense of D~*. Thus, the theory of
Watanabe- Yoshida guarantees the validity of the following expansion:

a A
E[I{Z(E, s0)—2>0} TSOZ(E, SO)] = I;)E:k (Z)Ek + 0(€]+]).

Thus, to show (D7), we will prove that EE, (z) = 0€;/ds0(z, 5o)- It is sufficient to show that

9P ()

1(2) = a5, (D9)

111

1T ‘f
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Indeed, for k£ =0, we notice that

F, "9 W(n
1{20—&>0}T0(Z) Z 95, %0)7()

EO(Z) To(z) Z =Ty(z) Z =0,

= 1 98g U(S )Y

and, on the other hand,
9% (2)

dsy

d
=—(Zy,— z)+ =0
as,
For higher order terms, we have
k ! m
_ 19VH(Z,)
‘:k(Z)EZ< 0 oyl Vi Yoo Xyl /1)(2 -i>’
i=1 N (isips o)y Giodas - d))€F k=i 1
where we have used the fact that 9Y, ,/dsy =0. On the other hand, based on (33), we note that

I (2) _
ds,

190T(Z,) 9
Z I axl TSO i1, i i2,j2""’Yiz,j/)’

(I (g, o oondp), (iadas - - JI))ES |

from where we deduce that the right-hand side of the above equation equals to

R
| ] IR Bk 2 - Sk PO B S Gl PR O 8 R TV ]
(U (i - onig)s Gradas oo JNESk I dx r=1 6s0

1 9U-YH(Z,) Y,
= b LITHZ), Wiy Y
L . - . ll axl as H.J1 712, )2 H—=1>J1-1
(L (iysins - ondp)s Grodas - -5 J1))ES & 0

k m —
-3 > LAz, oy ) e
- (l—l)' Ax! i1 i a2ttt Ny i s,
1= M= (s i), Grodas -0 i=1))€F k) ’ 0

k 1 0V H(Z,) no9
=¥< Z vTYilvilYiz»h““’Yi/v!'z><z TYM)'

(0 Gsigseeosig)s (rodas o)) €S ki ! n=1""0

Here, we have used the following simple facts:

3(1)1'1 a(l+1)T
axt — ax!

, forl=0,1,2,...,

as well as, forany r,p=1,2,3,...,1;

1 9Y-DH(Z,) Y,
Pl Sl VAU LY/ 25 (S A Y. .Y . Y. .
Ix! 3s0 UsJ1 712,027 0 02 T =1 Tl 17 T T T T

!

(L (i ondn), (rodas - -2 J) €S i
-

1 d""VH(Zy) 9,5, v

=(l (i1, .); ; e l! Ix! aso i Jh iZajZ,"")/ip—lsjp—lyi[)+]aj[l+l’--.’ i i’
BURCIRRRS i), (Jis2s -+ -, J)EF

owing to the definition of the index set &, given in (34). Hence, we obtain the expansion (D9).
Finally, we obtain that

Delta =

3(;5?) _rTI{ O)(Z:\Q (z(s9)s gO)AJ/2+0(A(J+1)/2)>

e ' 0Q); Q) ; .
(S G teton 02 00 + et 50 |0 0 ),

Jj=0

which leads to (D4) for validating the approximation for delta.

Similar argument leads to (D5) for validating the approximation for gamma. Thus, owing to the limited space of the

paper, we omit the tedious calculations. [J

Appendix E. On the expansions for CEV processes. Option pricing under the CEV process needs to be dealt with
carefully because of its interesting and important properties for different B8 (see, e.g., Emanuel and MacBeth [20], Davydov
and Linetsky [18], Carr and Linetsky [13], Andersen and Andreasen [2], Lewis [43]). Following the associate editor’s

instruction, we interpret our expansions in the following sense.

1T ‘f
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E.1. The case of 8 > 0. When 8 > 0, the local volatility function of the CEV process is unbounded at high asset prices.
According to the studies in Emanuel and MacBeth [20] (see also Davydove and Linetsky [18, Appendix B] and Lewis [43,
Chapter 8]), the discounted CEV price is a strict local martingale and indeed a strict super-martingale on the time interval
[0, T'] (see Elworthy et al. [19]), which represents a financial bubble in the terminology of Protter [53] and the references
therein. As a result, no equivalent martingale measures exist (see Sin [57]). To avoid this problem, one can use the following
limited CEV (LCEV hereafter) process proposed by Andersen and Andreasen [2]:

ds, (1) = rSy (1) dt + 85, (1) min{UP, S, ()P} dW (1), with S,(0)=s,, (E1)

where U > 0 is a large positive number. We can see that whenever the asset price crosses over the upper “switching level”
U, the LCEV process switches to a geometric Brownian motion. In what follows, we will argue that our expansion formula
(13) can be interpreted as an approximation to the Asian option price under the LCEV model (E1) with a large enough U.

To guarantee the validity of Theorem 2.1, we consider the following double-sided LCEV (DLCEV hereafter) model
{Sp(2)} with both the upper switching level U > 0 and the lower switching level L > 0,

dSp(t) =rSp(t)dt + @(Sp(1)) dW(t), with S,(0)=s,, (E2)

and its “smoothed” version {S,(7)},
dS (1) =rS,(1)dt+ ¢, (S,(t))dW(r), with S,(0)=s,. (E3)

Here the function ¢(-) is defined as
@(x) 1= 8x(1poy UP + 1oy x® + 1<y LP) (E4)

and the function ¢, () is an infinitely smooth modification of ¢(-) constructed by smoothening the “corners” in (L — &, L+
¢) and (U — &, U + ¢) for a small enough positive number (< min{L, (U — L)/2}),

SxUP, if x> U+ ¢,
Sx[f(X)xP4+(1—f(x)UP], ifU-e<x<U+e,
¢, (x) :={ 1P+, ifL+e<x<U-—c¢,
Sx[(1—f(x)xP+ f(x)LP], ifL—e<x<L+e,
SxLP, ifx<L-—eg,
where the function f(-) is defined as
Y(e+6—x)
= , E5
) = et o)+ e 15— ) E3)

with f(x) :=exp(—1/x) for x >0 and )(x) :=0 for x <O0.
It is straightforward to verify that ¢, () is infinitely smooth with bounded derivatives of all orders. Therefore, the model
(E3) satisfies the condition of Theorem 2.1. We shall show that

1 , + 1 ) +
E[(MJX(:)SE(]A)—K) i|—E|:<m+1j2(:)SU(]A)—K) :|—>0, as L— 0 and U — +oo. (E6)

Then for any initial price s,, our expansion formula (13), which provides an expansion for the Asian option price under the
model (E3) with a small enough L and a large enough U, can be interpreted as an approximation to the Asian option price
under the LCEV model (E1) with a large enough U.

To prove (E6), we first use a similar argument as in the proof of Theorem 4 in Andersen and Andreasen [2] to show

E[(%_H isn(jA) —K>+] —E[<L iSU(jA) —K>+] —0, asL—0 and U— +oo. (E7)

=0 m+155

Applying Jensen’s inequality twice yields (the function x* is convex)

£l (5 2500 —Kﬂ ~ | (5 S0 —Kﬂ

m+1 s m+1 iz

] m + ] m
< E[(mTl 3(S(jA) — s,,(m») ] = o L EL ) S8

j=0
Therefore, it suffices to show that for any j=1,...,m,

E[(Sp(jA) =Sy (jA)*]—=0, asL—0 and U— +oo.

L
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Denote by {F(¢)} the filtration generated by the Brownian motion {W ()}, and define the stopping time

7 :=inf{r>0; Sp(r) <L} =inf{t >0; S, () < L}.

Note that for any j=1,...,m,
E[(Sp(jA) = Sy (GA) "] = E[(Sp(jA) = Sy (GA) 1z, <jay] < E[Sp (M) (7, <jay]-
By the iterated conditioning and the optional sampling theorem, we obtain that for any j=1,...,m,

A

E[(Sp(j8) = Sy (iA)'] = E[E[Sp(iA) (5, <ja) | F (min{r,, jA}]]
= erjAE[l{TL<.iA]e_rmin{TL’jA)SD(min{TL’jA})]

e’ >0, asL—0 and U — +oo,

IA

which concludes the proof of (E7).
On the other hand, it can be shown that

E[(mj_léSa(jA) —K)+] —E[(m}’_léSD(jA) —K>+i| —0, asL—0and U— +oo,
Indeed, if we define the stopping time
Ty.L = inf{tzO; Sp(t) =U —¢€ or S,(¢) §L+£}
= inf{t>0;S,(t) > U — & or S,(1) <L+¢},

then it follows from the put-call parity that
1 m + 1 m +
Ell—— ) S.(jA)—K —E|{—— ) Sp(jA)—-K
[Grixson-5) |-G gem-) |

= ‘E{ [(K— mi]ésg(m)y - (K— mi]éSD(jA)y]l{ruld}}l

<2KP(1y ., <T)—>0, asL—0 and U— +oo, (EB)

where the last inequality follows from the nonexplosiveness at infinity and the nonattainability at zero of the CEV process
when 8 > 0 (note that as L — 0, € — 0 because &€ < L). Then, combining (E7) with (E8) yields (E6) immediately.

E.2. The case of 8 <0. When 8 <0, zero is either an exit boundary (for 8 € [—1/2,0)), or is a regular boundary (for
B < —1/2) and is then specified as a killing boundary by adjoining a killing boundary condition (see Borodin and Salminen
[9], Karlin and Taylor [36], Davydov and Linetsky [18]). Therefore, in either case the CEV process is stopped once it hits
zero (the transition density is norm defective; see Lewis [43, Chapter 8]). Such a feature is employed to model bankruptcy;
see, e.g., Carr and Linetsky [13].
To deal with this case, one can use the following LCEV process with a lower switching level L > 0 (see Andersen and
Andreasen [2]):
dS; () =rS.(t)dt+ (S, (1)) dW (), with S, (0)=s,, (E9)

where the function @(-) is defined as
o(x) == 8x(1(X>L}xB + l[st]LB).

In what follows, we shall argue that our expansion formula (13) can be interpreted as an approximation to the Asian option
price under the LCEV model with a small enough L.
Similarly to the case of 8 > 0, we consider the following “smoothed” version of the LCEV model (E9) to guarantee the
validity of Theorem 2.1:
dS, (1) =rS,(1) di + $,(S,(1)) dW(t), with $,(0) =s,, (E10)

where the function ¢,(-) is an infinitely smooth modification of ¢(-). By smoothening the corners in (L — ¢, L+ ¢) for a
small enough positive number £(< L), we can construct the function ¢,(-) as follows

SxPH!, if x>L+e,
&,(x) =2 6x[(1 = fF(x))xP+ f(x)LP], f L—e<x<L+e,
SxLEB, if x<L-—eg,

where the function f(-) is defined in (ES). It is straightforward to verify that ¢,(-) is infinitely smooth with bounded
derivatives of all orders. Therefore, the model (E10) satisfies the condition of Theorem 2.1.

L
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Similarly to the argument as in the proof of Theorem 4 in Andersen and Andreasen [2], we can show
1 m. + 1 m +
El| —) S.(JA)—K —El|—— ) S,(JA)—K 0, L— 0. Ell
[(mngOSU) ) | [(mHgL(J) ) |0 wi- E11)

Accordingly, for any initial price s,, our expansion formula (13), which provides an expansion for the Asian option price
under the model (E10) with a small enough L, can be interpreted as an approximation to the Asian option price under the
LCEV model (E9) with a small enough L.
To prove (El1), we shall first show by induction that for any n € N, h; e R, j=1,...,n, and 0 < T} <
T,<---<T,
P(S(T)<h;,j=1,....,n) > P(S(T)<h;j=1,...,n), asL—0, (E12)

where {S(#)} is the CEV process with the killing boundary zero. When n = 1, (E12) has been proved in Andersen and
Andreasen [2, Theorem 4]. Assume (E12) holds for n = k. Then when n=k + 1,

|PS(T)<hjj=1,....k+1)=P(S(T)<h;,j=1,....k+1)]

=|PGUT) <hyj=1,. o K= PEUT) < hyj=1, o kS (Th) > Ay

—P(S(T) <hjj=1,....K)+P(S(T) <h;, j=1,....k S(T,) > hysy)|

<|PS(T)<hjj=1.....k)=P(S(T)<h;,j=1,....k)|

HPEAT) <hjj=1oo o k8, (Th) > hyy) = PS(T) < hj j=1,. . k. S(Tyy) > Iy (E13)
The first term of the RHS of (E13) goes to 0 as L — 0 by the induction hypothesis. As for the second term, we define
7, :=inf{t>0;8,(r) < L+ ¢} =inf{t > 0; S(t) < L+ &}.
Then we have

‘P(SS(TJ) <h;,j=1...,k, Sa(TkJrl) > hep) = P(S(T) <hj j=1,....k S(Tyy) > hk+1)}

<hj, =<

= ‘P(SS(TJ) <h,j=1...,k Sa(TkH) > gy T < Tig)

_P(S(Tj) = hj’j: Lok, S(Tigy) > My 7 < Tk+1)|

< PSo(Tis1) > hysrs 7 < Top) + PS(To1) > gy < Tig)

—0, asL—0,
where the limit holds thanks to (A.4) and (A.5) of the proof for Theorem 4 in Andersen and Andreasen [2]. Therefore,
(E12) holds for n =k + 1, and hence the proof of (E12) is completed. In particular, this implies that (S,(A), ..., S, (mA))
converges weakly to (S(A), ..., S(mA)) as L — 0. Note that 7(yy, ..., y,) = (K—(so+ XL, ¥;)/(m+1))* is a bounded,
continuous function. Then it follows that

(RN (iR

(s som) J#{ (- Eee) |

—0, asL—0, (E14)

where the first equality holds due to the put-call parity.
Similarly, we can show that

F(GrEsen =) [ Ggon )

Then (E11) follows immediately from (E14) and (E15).

—0, asL—0. (E15)
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