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1. Introduction. Asian options, whose payoffs depend on the arithmetic average of the underlying asset
prices over a prespecified time period, are among the most popular exotic options traded actively in the financial
markets. Asian options and Asian-type derivatives have a wide application in equity, currency, interest rate,
energy, and commodity, due primarily to the following two attractive features. First, they can help reduce the
risk of potential market manipulations by large market participants. Second, they can readily serve as appropriate
hedging instruments for the firms with significant revenues collected periodically and associated with certain
financial assets.

Consequently, the valuation of Asian options has attracted much attention from both researchers and practition-
ers. Research on the pricing of continuously monitored Asian options under various models has made significant
progress. For example, under the Black-Scholes model (BSM), Linetsky [46] derived a spectral expansion for
continuously monitored Asian option prices. Večeř [63] provided a numerically stable one-dimensional partial
differential equation (PDE) for the Asian option price. An analytical single Laplace transform for the Asian
option price under the BSM was obtained by Geman and Yor [28], and closed-form double transforms were
provided by Fu et al. [22] and Fusai [23]. As a generalization of Geman and Yor [28] and Fusai [23], Cai and
Kou [12] derived a closed-form double Laplace transform of the Asian option price under the hyper-exponential
jump diffusion model. Fouque and Han [21] employed singular perturbation to obtain an asymptotic expansion
of the continuously monitored Asian option price under the fast mean-reverting stochastic volatility model. These
are only a small portion of a large volume of literature on continuously monitored Asian option pricing. For an
extensive literature review, we refer to, e.g., Cai and Kou [12].

It is worth noting that most Asian options traded in the real marketplace are monitored discretely rather
than continuously. Nonetheless, this “discretely monitoring” structure poses a great challenge to the associated
pricing problem. Pioneering works under the BSM consist of the fast Fourier transform (FFT)-based recursive
method by Carverhill and Clewlow [14] and the PDE approach via the change of numeraire by Andreasen [4].
Ju [34] proposed an accurate Taylor expansion approach (around zero volatility) to the pricing of discretely
monitored Asian options and basket options under the BSM. Howison [31] developed approximations to various
options with discrete structures under the BSM via the multiple timescales method. Recently a variety of
sophisticated recursive algorithms have also been developed to evaluate discretely monitored Asian options
under general exponential Lévy models. For instance, Fusai and Meucci [24] proposed a new numerical pricing
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method combining a recursive numerical quadrature with the FFT algorithm. Fusai et al. [25] presented a
numerical scheme based on maturity randomization. Černý and Kyriakou [15] suggested an improved FFT
pricing algorithm that complemented the existing literature. Within the nonexponential-Lévy framework, Fusai
et al. [26] derived an elegant analytical pricing formula in the Cox-Ingersoll-Ross (CIR) model and applied the
results to commodity markets.

This paper aims at pricing discretely monitored Asian options under general one-dimensional diffusion models,
all of which are nonexponential-Lévy models except the BSM. Specifically, we manage to derive a closed-form
asymptotic expansion for the Asian option price based on the celebrated theory by Watanabe [64]. This theory
developed Malliavin calculus for the so-called (generalized) “Wiener functionals,” which can be roughly thought
of as (generalized) functions of random variables related to Wiener processes or Brownian motions, and applied
it to investigate the large-deviations-based asymptotic expansion for heat kernels. Accordingly, it can be applied
naturally to evaluate discretely monitored Asian options under the diffusions because the Asian option payoffs are
essentially generalized Wiener functionals. Despite the sophisticated theory, the computation for the asymptotic
expansion is very much similar to the Taylor expansion of a common function and thereby can be obtained
in a systematical manner by differentiating a standardized payoff function and then explicitly calculating some
conditional expectations relating to normal distributions.

Note that one important issue associated with asymptotic expansion approaches is which small variable to
be selected as the expansion parameter. A small variable naturally involved in discretely monitored Asian
options is the length of the monitoring interval. For theoretical convenience we choose its square root as
the expansion parameter. Therefore, our expansion can be viewed as a “small-time” expansion. Small-time
expansions via different techniques have been widely applied in finance; see, e.g., Broadie et al. [10, 11], Hagan
et al. [30], Kou [38], Andersen and Brotherton-Ratcliffe [3], and Takahashi and Yamada [61]. In the real financial
markets, the monitoring interval length of discretely monitored Asian options is typically equal to 1/12 (monthly),
1/52 (weekly), and 1/250 (daily), which turns out to be small enough to make our asymptotic expansion converge
quite fast. As a result, the closed-form expansion formulas up to the third order have achieved a high accuracy;
see numerical results in §5.

Indeed, the applications of Malliavin-calculus-based approximations in option pricing have led to many elegant
results; see, e.g., Yoshida [65], Takahashi [58, 59], Benhamou et al. [6, 7, 8], Gobet and Miri [29], Kunitomo and
Takahashi [41, 42], Uchida and Yoshida [62], Shiraya and Takahashi [55], and Takahashi et al. [60]. In particular,
to approximate the law of the very general average (including both continuous and discrete averages) of the
marginal of diffusion processes, Gobet and Miri [29] proposed an efficient approximation with nonasymptotic
error bounds and higher accuracy in the cases of small time or small volatility; Kunitomo and Takahashi [40]
presented a “small-diffusion” expansion for pricing continuously monitored Asian options under the Black-
Scholes model; Shiraya and Takahashi [55] derived a small-diffusion expansion formula (up to the third order)
for pricing discretely monitored Asian options with either uniform or nonuniform time steps under the Heston
and the �-SABR models. Fundamentally different from the aforementioned expansions with the expansion
parameters selected as auxiliary ones, our small-time expansion is based on a different parameterization, where
the expansion parameter comes naturally from the option contract. In general diffusion models, our small-
time expansion can lead to closed-form expansion formulas in terms of only the probability density function
(pdf) and the cumulative distribution function (cdf) of the standard normal distribution, whereas the small-
diffusion expansion formulas may involve some integrals. Although in many practical cases these integrals can
be evaluated explicitly, they may need to be calculated numerically in some sophisticated nonlinear cases studied
by, e.g., Aït-Sahalia [1] and Bakshi et al. [5]. Another key difference between our work and the literature is
that we develop a systematic method to explicitly express general correction terms rather than first several ones.
This is made possible because we apply the Itô-Stratonovich calculus, which offers significant computational
convenience compared with the Itô calculus employed in many other approaches in the literature. Moreover,
we propose a novel method for calculating a new type of conditional expectations involving iterated stochastic
integrals, which is potentially useful in a wide range of studies in applied probability and stochastic modeling.

The contribution of our paper is twofold.
First, we propose a closed-form small-time expansion approach to pricing discretely monitored Asian options

in general one-dimensional diffusion models, where the expansion parameter is naturally selected to be the
square root of the monitoring interval length. Under some regularity conditions, we provide a rigorous proof
for the convergence of the expansion formula, which, however, seems unavailable for many existing expansion
methods for option pricing.

Second, we develop a systematic method for the explicit calculation of the general correction terms of
the asymptotic expansion pricing formula up to an arbitrary order in general one-dimensional diffusion mod-
els. Moreover, this systematic method can be implemented via any symbolic computation package such as
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Table 1. Some popular asset pricing models nested in the class of one-dimensional diffusion models.

�4x5 �4x5

The Black-Scholes-Merton (BSM) model 4r − q5x (r > 01 q ≥ 0) �x (� > 0)

The Brennan-Schwartz model �4�− x5 (�> 01 � ∈�) �x (� > 0)

The Cox-Ingersoll-Ross (CIR) model �4�− x5 (�> 01 � ∈�) �
√
x (�> 0)

The constant elasticity of volatility (CEV) model rx (r > 0) �x�+1 (�> 01� ∈�)

Mathematica. (It seems that most expansion pricing methods in the literature usually discuss only the explicit
computations of the first several terms rather than general terms because this is always challenging, if not
impossible.) In particular, we explicitly provide the closed-form expressions for the first four terms. Numerical
experiments suggest that the corresponding expansion formula up to the third order performs very well for a
broad range of diffusion models, including not only those satisfying these regularity conditions such as the BSM
and the Brennan-Schwartz process, but also those violating them, e.g., the CIR model (see Cox and Ross [17])
and the general CEV models (see, e.g., Cox [16], Linetsky [45], Linetsky and Mendoza [47]).

Furthermore, numerical results demonstrate several appealing features of our expansion formula up to the
third order:

(I) It is highly accurate and performs consistently well for a wide range of model parameters and contract
parameters.

(II) It usually takes less than 0.5 seconds to generate one numerical result. This is mainly because the
expansion has a closed-form expression only in terms of the standard normal pdf and cdf.

(III) The closed-form expansion formula is simple to implement. Despite the seemingly complicated expres-
sion, the expansion formula consists only of the standard normal pdf and cdf. No other complex numerical
procedures such as Fourier or Laplace transform inversions and numerical integrations are involved in the
implementation.

(IV) Our pricing method can also be applied to accurately evaluate hedging parameters such as delta and
gamma. Indeed, closed-form approximations to these Greeks can be obtained simply by differentiating the
closed-form expansion pricing formula in a straightforward way.

The remainder of the paper is organized as follows. Section 2 presents our main theoretical results about the
small-time asymptotic expansion of discretely monitored Asian option price. Section 3 exemplifies the explicit
calculation of closed-form expansion formulas using the first four terms under the BSM model, and §4 provides
a systematic method to compute explicitly the expansion formulas up to an arbitrary order in general diffusions.
Numerical results are given in §5. Most proofs are deferred to the appendices.

2. The main result.

2.1. The model and discretely monitored Asian options. Consider an asset pricing model 8S4t52 t ≥ 09,
which follows a one-dimensional diffusion governed by the following stochastic differential equation (SDE)
under a risk-neutral measure P :

dS4t5=�4S4t55dt +�4S4t55dW4t51 with S405= s0 > 01 (1)

where the functions �4x5 > 0 and �4x5 are continuous for x ∈ 401+�5 and 8W4t52 t ≥ 09 is a standard Brownian
motion. The class of one-dimensional diffusion models nests a variety of popular asset pricing models; see
Table 1. It is worth pointing out that if 8S4t59 is the price process of a traded asset, then the drift �4S4t55
under the risk-neutral measure P must be of the form rS4t5 or 4r − q5S4t5, where r is the risk free interest
rate and d the dividend yield; see, e.g., the BSM model and the CEV model in Table 1. Nonetheless, if 8S4t59
corresponds to an asset that cannot be directly traded, the drift �4S4t55 under the risk-neutral measure P is not
necessary to take the form of rS4t5 or 4r − q5S4t5 because the discounted price process does not have to be
a martingale under the risk-neutral measure. For instance, the Brennan-Schwartz model and the CIR model in
Table 1 can be used to model the spot price of a commodity, which is usually not traded directly, and therefore,
their drifts can be of the mean-reverting type under the risk-neutral measure. Note that the commodity futures
price, however, is a martingale under the risk-neutral measure because the futures contract is assumed to be a
traded asset. For more discussions on the spot prices and future prices of the commodities, we refer to, e.g.,
Li and Linetsky [44], Schwartz [54], and Geman [27].
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The price of a discretely monitored Asian call option at time 0 is given by

C4ã5=E

[

e−rT

(

1
m+ 1

m
∑

j=0

S4jã5−K

)+]

1 (2)

where r is the risk-free interest rate, T the maturity, K the strike price, and the m + 1 monitoring dates are
equally spaced: 01ã12ã1 : : : 1mã≡ T , with ã denoting the length of monitoring interval.

2.2. The selection of expansion parameter. The main objective of this paper is to obtain a closed-form
asymptotic expansion for the discretely monitored Asian call option price (the Asian put options can be dealt
with similarly) under the general diffusion model (1). The first important issue is the selection of an expansion
parameter �. For pricing European type options, various effective applications of the so-called small-time expan-
sions have been proposed by choosing the option maturity as a parameter to expand; see, e.g., Andersen and
Brotherton-Ratcliffe [3] and Hagan et al. [30].

In this paper, we select the expansion parameter to be the square root of the monitoring interval length
(i.e., � =

√
ã) rather than the option maturity. Note that such a choice naturally comes from the contract

parameter of the discretely monitored Asian option instead of auxiliary assignments used in the small-diffusion
expansions. Furthermore, the typical values of

√
ã in the marketplace such as

√
1/12 (monthly monitored),

√
1/52 (weekly monitored), and

√
1/250 (daily monitored) turn out to be sufficiently small to guarantee a fast

convergence of the associated asymptotic expansions. As a result, the expansion pricing formula with only a
few terms, e.g., four terms up to the third order, can achieve a high accuracy; see the numerical examples in §5.

2.3. The main result. Before presenting our main result, Theorem 2.1, and proving its validity, we first
provide a heuristic approach to the main result to motivate readers by the intuition behind the scenes. Define

X4t1 �5 2= S4�2t51 with � ≡
√
ã0

Then by (1) we obtain

X4t1 �5= s0 + �2
∫ t

0
�4X4u1 �55du+ �

∫ t

0
�4X4u1 �55dW4u1 �51 (3)

where W4t1 �5 2= 41/�5W4�2t5 is a standard Brownian motion adapted to the filtration generated by
8W4�2t52 t ≥ 09. Without any confusion we write W4t1 �5 as W4t5 in what follows. For ease of exposition,
define

Bi 2=
1

√
i
W4i51 for i = 1121 : : : 1m0 (4)

Then (B11B21 : : : 1Bm) has a multivariate normal distribution, and a direct calculation yields

�ij 2= Corr4Bi1Bj5=
√

min4i1 j5/max4i1 j51 for i1 j = 11 : : : 1m0 (5)

Enlightened by the asymptotic expansion procedure proposed in Watanabe [64], we standardize X4k1 �5 in
the following way:

Yk4�5 2=
X4k1 �5− s0

��4s05�
1 for k = 1121 : : : 1m1 (6)

where the constant � > 0 will be specified later for ease of computation. Note that the goal of such a standard-
ization is to guarantee the convergence of our expansion. Then the Asian call option price C4ã5 in (2) can be
expressed in terms of 8Yk4�52 k = 11 : : : 1m9:

C4ã5=
e−rT

√
ã�4s05�

m+ 1
E

[( m
∑

k=1

Yk4�5− z

)+]

1 with z 2=
4m+ 154K − s05

√
ã�4s05�

0 (7)

To obtain an asymptotic expansion for the Asian call option price C4ã5 in (7), we take the following four
steps heuristically.

• Step 1. Derive a power-series expansion for X4k1 �5 around � = 0. For any J = 011121 : : : 1

X4k1 �5=

J
∑

j=0

Fk1 j�
j
+O4�J+151 with Fk10 ≡ s0 for k = 11 : : : 1m0 (8)

This can be done intuitively by regarding X4k1 �5 as a function of � and then taking a Taylor expansion.
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• Step 2. It follows from (6) and (8) that a power-series expansion for Yk4�5 around � = 0 is

Yk4�5=

J
∑

j=0

Yk1 j�
j
+O4�J+151 with Yk1 j 2=

Fk1 j+1

�4s05�
for k = 11 : : : 1m0 (9)

• Step 3. Derive a power-series expansion for G4�5 2= 4
∑m

k=1 Yk4�5 − z5+ around � = 0 intuitively by the
chain rule and Taylor expansion.

G4�5=

J
∑

j=0

êj4z5�
j
+O4�J+151 (10)

where the first four coefficients are explicitly calculated as


































ê04z5= 4Z0 − z5+1 ê14z5=

m
∑

i=1

Yi1118Z0≥z91

ê24z5=

m
∑

i=1

Yi1218Z0≥z9 +
1
2!

m
∑

i1 j=1

Yi11Yj11�4Z0 − z51

ê34z5=

m
∑

i=1

Yi1318Z0≥z9 +
2
2!

m
∑

i1 j=1

Yi11Yj12�4Z0 − z5+
1
3!

m
∑

i1 j1 k=1

Yi11Yj11Yk11�
′4Z0 − z50

(11)

Here �4 · 5 denotes the Dirac delta function and

Z0 2=
m
∑

k=1

Yk100 (12)

• Step 4. Taking expectations on both sides of (10) and plugging the result into (7) yields

C4ã5=
e−rT �

√
ã�4s05

m+ 1

( J
∑

j=0

ìj4z5�
j
+O4�J+15

)

1 with ìj4z5 2=Eêj4z5 for j = 01 : : : 1 J 0

Remark 2.1. It is worth mentioning that although the above asymptotic expansion of C4ã5 and the inter-
mediate results (8)–(10) were derived heuristically, their validity can all be justified rigorously in the sense of
expansions for random variables via the theory of Watanabe [64]; see the following Theorem 2.1 and its proof
given in Appendix A via the Malliavin calculus for generalized random variables proposed in Watanabe [64] and
Yoshida [65] as well as the related theory of asymptotic expansion for option pricing developed in Kunitomo
and Takahashi [42].

Theorem 2.1. Assume that �4s05 6= 0 and the two functions �4 · 5 and �4 · 5 have bounded derivatives of all
orders. For any J = 011121 : : : 1 the discretely monitored Asian option price (7) (or (2)) admits the following
asymptotic expansion in the sense of classical calculus

C4ã5=
e−rT �

√
ã�4s05

m+ 1

( J
∑

j=0

ìj4z5ã
j/2

+O4ã4J+15/25

)

1 (13)

where m is the number of monitoring intervals, ã= T /m is the length of monitoring intervals, and

ìj4z5=Eêj4z51 for j = 01 : : : 1 J 1 (14)

with êj4z5, j = 011121 : : : , given by (8)–(10).

Proof. See Appendix A.

Remark 2.2. The coefficients ìj4z5 in (13) can be calculated through (8)–(10) and (14). Note that most
existing expansion methods for option pricing focus on the derivation of the first several expansion terms rather
than discuss the explicit calculation of general terms. This is because the calculation of higher order terms
becomes much more complicated, and it is usually very challenging, if not impossible, to provide a systematic
approach to the calculation of general terms even for European type options. In contrast, for our expansion
method we manage to illustrate how to explicitly calculate all the coefficients (i.e., the general expansion terms)
in a systematic way via only basic mathematical operations (without recursions and numerical integrations
involved) under the general one-dimensional diffusions; see §4.3. This is made possible mainly because of the
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convenience offered by our particular parameterization (3) and the computational advantage rendered by the
application of the Itô-Stratonovich calculus that resembles the classical calculus. However, for other expansion
methods, the associated parameterizations and computational methods may not lead to explicit results. For
example, the expansion in Takahashi et al. [60] uses a different parameterization (i.e., the small diffusion) and
applies the Itô calculus in the computation. As a result, their calculation relies on recursion-based algorithms
and (multidimensional) numerical integrations.

Remark 2.3. Another appealing feature of our expansion method is that, under some regularity conditions,
we provide a rigorous proof for its validity, which is unavailable for many existing expansion methods for option
pricing. It is worth pointing out that these technical regularity conditions on the functions �4 · 5 and �4 · 5 in
Theorem 2.1 are conventionally proposed for the study of diffusion models; see, e.g., the monographs by Ikeda
and Watanabe [32] and Nualart [50]. It is well known that relaxation on these conditions would pose a great
technical challenge for theoretical verification of the validity. However, these conditions are sufficient but not
necessary. As we shall see in §5, numerical examples suggest that our expansion method is not limited to these
sufficient conditions but applicable in a wide range of models.

3. An illustrative example: The Black-Scholes model (BSM). Before discussing the explicit computations
of the general expansion pricing formula up to an arbitrary order in the general diffusion model in §4, we first
use a simple model—the BSM—as an example to illustrate how to explicitly compute the first four coefficients
ìj4z5 for j = 0111 : : : 14 in (14), or equivalently the expansion pricing formula up to the third order, in an
easy way.

As we shall see, the first four coefficients, and in fact, all ìj4z5’s, only involve the standard normal pdf
and cdf, and so does the expansion formula. Numerical experiments demonstrate that the resulting closed-form
expansion pricing formula up to the third order is highly accurate; see §5.1.

Under the BSM specified in Table 1,

X4k1 �5= s0 exp4��W4k5+ �2bk51 (15)

where b 2= r − q −
1
2�

2. From (11) and (14) we know that the first four coefficients are given by















































ì04z5=E4Z0 − z5

ì14z5=

m
∑

i=1

E6Yi1118Z0≥z97

ì24z5=

m
∑

i=1

E6Yi1218Z0≥z97+
1
2!

m
∑

i1 j=1

E6Yi11Yj11�4Z0 − z57

ì34z5=

m
∑

i=1

E6Yi1318Z0≥z97+
2
2!

m
∑

i1 j=1

E6Yi11Yj12�4Z0 − z57+
1
3!

m
∑

i1 j1 k=1

E6Yi11Yj11Yk11�
′4Z0 − z571

(16)

where Z0 2=
∑m

k=1 Yk10 and















































Yk10 =
1
�
W4k5=

√
k

�
Bk

Yk11 =
1

2�

(

�W 24k5+
2bk
�

)

=
k

2�

(

�B2
k +

2b
�

)

Yk12 =
1

6�
4�2W 34k5+ 6bkW4k55=

k
√
k

6�
4�2B3

k + 6bBk5

Yk13 =
1

24�

(

�3W 44k5+ 12b�kW4k52
+

12b2k2

�

)

=
k2

24�

(

�3B4
k + 12b�B2

k +
12b2

�

)

1

(17)

which are calculated by first differentiating X4t1 �5 with respect to (w.r.t.) � to obtain Fk1 j for j = 11 : : : 14 and
then substituting them into (9). For computational convenience, we choose

� =

√

Var
( m
∑

k=1

W4k5

)

=

√

m4m+ 1542m+ 15
6

1 (18)

such that Z0 =
∑m

k=1 Yk10 =
∑m

k=1 W4k5/� has a standard normal distribution.
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First, ì04z5 is easy to compute as follows:

ì04z5=E4Z0 − z5+ =

∫ �

−�

4u− z5+�4u5du= zN4z5+�4z5− z1 (19)

where �4 · 5 and N4 · 5 denote the standard normal pdf and cdf, respectively.
Second, we can see from (16) that the calculation of ì14z5, ì24z5, and ì34z5 reduces to the computation of

the following three types of expectations.
Type 1: E6Yi1118Z0≥z971 E6Yi1218Z0≥z971 E6Yi1318Z0≥z973
Type 2: E6Yi11Yj11�4Z0 − z571 E6Yi11Yj12�4Z0 − z573
Type 3: E6Yi11Yj11Yk11�

′4Z0 − z57.
Conditional on Z0, the above three types of expectations can be evaluated as follows:

Type 1: E6Yi1 j18Z0≥z97 = E618Z0≥z9E4Yi1 j �Z057

=

∫ �

z
E6Yi1 j �Z0 = z7�4z5dz1 for j = 112133 (20)

Type 2: E6Yi11Yj1 l�4Z0 − z57 =

∫ �

−�

�4u− z5E6Yi11Yj1 l �Z0 = u7�4u5du

= E6Yi11Yj1 l �Z0 = z7�4z51 for l = 1123 (21)

Type 3: E6Yi11Yj11Yk11�
′4Z0 − z57 =

∫ �

−�

�′4u− z5E6Yi11Yj11Yk11 �Z0 = u7�4u5du

= −

∫ �

−�

�4u− z5
¡

¡u
8E6Yi11Yj11Yk11 �Z0 = u7�4u59du

= −
¡

¡z

{

E6Yi11Yj11Yk11 �Z0 = z7�4z5
}

1 (22)

where the derivations of (21) and (22) are based on the properties of the Dirac delta function (see Kanwal [35]).
Since Yi1 j is a polynomial in Bi for any i = 11 : : : 1m and j = 11 : : : 14 (see (17)), we conclude from (20)–(22)

that the calculation of ìj4z5 for j = 11213 is reduced to explicit computations of the conditional cross-moment

M
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 2=E

(

B
p1
i1
B

p2
i2
1 : : : 1B

ps
is

�Z0 = z
)

1 (23)

its integration

R
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 2=

∫ �

z
M

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4u5�4u5du1 (24)

and its differentiation

Q
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 2= −

¡

¡z

[

M
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5�4z5

]

1 (25)

where 1 ≤ i11 i21 : : : 1 is ≤m and s, p11 p21 : : : 1 ps ≥ 1 are all integers. Indeed, we point out that this is true not
only for the first four coefficients but also for general ones.

Note that the random vector (B11B21 : : : 1Bm1Z0) has a multivariate normal distribution. Thus the condi-
tional distribution of (B11B21 : : : 1Bm) given Z0 = z is also normal, and the corresponding conditional moment
generating function has a closed-form expression as follows:

�4�11 : : : 1�m3 z5 2=E4e
∑m

k=1 �kBk �Z0 = z5= exp
( m
∑

k=1

�k�kz+
1
2

m
∑

i1 j=1

�i�j4�ij −�i�j5

)

1

where �ij ’s are defined in (5) and

�k 2= Corr4Z01Bk5=
1

2�
42m− k+ 15

√
k1 for k = 11 : : : 1m0

Therefore, we can derive M
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 explicitly by differentiating �4�11�21: : : 1�m3z5 at 4�1, �21: : : 1�m5=

40101: : : 105. As a by-product, it can be seen that M 4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 is a polynomial in z with order p 2= p1 +p2 +

· · ·+ps . We summarize these results in the following lemma.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

22
2.

29
.9

3.
10

] 
on

 0
9 

A
pr

il 
20

15
, a

t 2
2:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Cai, Li, and Shi: Pricing Discretely Monitored Asian Options in Diffusion Models
796 Mathematics of Operations Research 39(3), pp. 789–822, © 2014 INFORMS

Lemma 3.1. The conditional cross-moment M 4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 defined in (23) is a polynomial in z with order

p 2= p1 +p2 + · · · +ps:

M
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5=

p
∑

n=0

anz
n
≡

¡p6�4�11�21 : : : 1�m3 z57

¡�
p1
i1
¡�

p2
i2
1 : : : 1 ¡�

ps
is

∣

∣

∣

∣

�1=�2=···=�m=0

0 (26)

Remark 3.1. To explicitly compute the coefficients 8an9 in (26), we need to differentiate �4�11�21
: : : 1�m3 z5 at 4�11�21 : : : 1�m5= 40101 : : : 105. Indeed, this can be done in a simple manner via any symbolic
computation package such as Mathematica.

Remark 3.2. To calculate ì14z5, ì24z5, and ì34z5, we provide explicit expressions of all related
M

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 as follows:



































































































M
415
4i5 4z5=E4Bi �Z0 = z5= �iz1

M
425
4i5 4z5=E4B2

i �Z0 = z5= �2
i z

2 + �̄2
i 1

M
435
4i5 4z5=E4B3

i �Z0 = z5= �3
i z

3 + 3�i�̄
2
i z1

M
41125
4i1 j5 4z5=E4BiB

2
j �Z0 = z5= �i�

2
j z

3 +�i�̄
2
j z+ 2�jrijz1

M
42125
4i1 j5 4z5=E4B2

i B
2
j �Z0 = z5= 2r2

ij + 4�2
i z

2 + �̄2
i 54�

2
j z

2 + �̄2
j 5+ 4rij�i�jz

21

M
43125
4i1 j5 4z5=E4B3

i B
2
j �Z0 = z5= �3

i �
2
j z

5 + 4�̄2
i �

3
j + 6�2

i �jrij + 3�i�̄
2
i �

2
j 5z

3

+ 43�i�̄
2
i �̄

2
j + 6�ir

2
ij + 6�j �̄

2
i rij5z1

M
4212125
4i1 j1 k5 4z5=E4B2

i B
2
jB

2
k �Z0 = z5

= �2
i �

2
j�

2
kz

6 + 4�2
i �

2
j �̄

2
k +�2

i �̄
2
j�

2
k + �̄2

i �
2
j�

2
k + 4�i�j�k4�irjk +�jrik +�krij55z

4

+ 4�2
i �̄

2
j �̄

2
k + �̄2

i �
2
j �̄

2
k + �̄2

i �̄
2
j�

2
k + 2�2

i r
2
jk + 2�2

j r
2
ik + 2�2

kr
2
ij + 8�i�jrikrjk

+ 8�i�krijrjk + 8�j�krijrik + 4�i�j �̄
2
krij + 4�i�̄

2
j�krik + 4�̄2

i �j�krjk5z
2

+ 4�̄2
i �̄

2
j �̄

2
k + 2�̄2

i r
2
jk + 2�̄2

j r
2
ik + 2�̄2

kr
2
ij + 8rijrikrjk51

(27)

where
rij 2= �ij −�i�j and �̄i 2=

√

1 −�2
i 0 (28)

Now let us turn to R
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 and Q

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 defined in (24) and (25), respectively. Before addressing

how to compute them, we first present a lemma.

Lemma 3.2. Define Pn4x5 2=
∫ �

x
un�4u5du. Then 8Pn4x52 n≥ 09 can be computed recursively:

P04x5= 1 −N4x51

P14x5=�4x51

Pn4x5= xn−1�4x5+ 4n− 15Pn−24x51 for n= 2131 : : : 0

(29)

Proof. P04x5 and P14x5 can be derived via a straightforward calculation. If n≥ 2, the recursion (29) can be
obtained simply by integration by parts. �

Based on Lemmas 3.1 and 3.2, we have the following result.

Lemma 3.3. R
4p11p21 : : : 1 ps5

4i11i21 : : : 1is5
4z5 and Q

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 defined in (24) and (25) are given by

R
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5=

p
∑

n=0

anPn4z51 (30)

Q
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5=

[

a0z+

p
∑

n=1

an4z
n+1

− nzn−15

]

�4z51 (31)

where an’s are the same as in Lemma 3.1 and Pn4 · 5 are defined in (29).

Proof. Substituting (26) into (24) and (25) and applying Lemma 3.2 yields the results immediately. �

Now we are ready to present the closed-from expansion pricing formula up to the third order.
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Theorem 3.1. In the BSM, the expansion (13) for the discretely monitored Asian option price holds. In par-
ticular, the asymptotic expansion pricing formula up to the third order is given by

C4ã5=
e−rT

√
ã�4s05�

m+ 1

(

ì04z5+ì14z5ã
1/2

+ì24z5ã+ì34z5ã
3/2

+O4ã25
)

1 as ã→ 01 (32)

where the coefficients ìi4z5 for i = 0111213 are explicitly calculated as follows

ì04z5= zN4z5+�4z5− z1

ì14z5=
�

2�

m
∑

i=1

iR
425
4i5 4z5+

bm4m+ 15
2��

41 −N4z551

ì24z5=

m
∑

i=1

IIai +

m
∑

i1 j=1

IIbij1

ì34z5=

m
∑

i=1

IIIai +

m
∑

i1 j=1

IIIbij +

m
∑

i1 j1 k=1

IIIcijk0

Here

IIai =
i3/2

�

(

1
6
�2R

435
4i5 4z5+ bR

415
4i5 4z5

)

1

IIbij =
ij

2�2
�4z5

(

�2

4
M

42125
4i1 j5 4z5+

b

2
M

425
4i5 4z5+

b

2
M

425
4j5 4z5+

b2

�2

)

3

IIIai =
i2

�

(

�3

24
R

445
4i5 4z5+

b�

2
R

425
4i5 4z5+

b2

2�
R

405
4i5 4z5

)

1

IIIbij =
i3/2j

�2
�4z5

(

�3

12
M

43125
4i1 j5 4z5+

b�

2
M

41125
4i1 j5 4z5+

b�

6
M

435
4i5 4z5+

b2

�
M

415
4i5 4z5

)

1

IIIcijk =
ijk

6�3
�4z5

(

�3

8
Q

4212125
4i1 j1 k5 4z5+

b�

4
4Q

42125
4i1 j5 4z5+Q

42125
4j1 k54z5+Q

42125
4i1 k5 4z55

+
b2

2�

(

Q
425
4i5 4z5+Q

425
4j54z5+Q

425
4k54z5

)

+
b3z

�3

)

1

and all the involved M
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 are explicitly given by (27). Moreover, all the involved R

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 and

Q
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 depend on those M

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 in (27) through (30) and (31).

Proof. We note that the drift and volatility functions under the BSM have bounded derivatives of all orders.
Therefore, Theorem 2.1 guarantees the convergence of the expansion pricing formula (13) and in particular (32).
The closed-form expression of ì04z5 has been derived in (19). As regards ì14z5, ì24z5, and ì34z5, substitut-
ing (17) into (20)–(22) and then plugging the results into (16) yields immediately their closed-form expansions
in terms of M 4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5, R4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 and Q

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5. �

4. Closed-form asymptotic expansions of discretely monitored Asian option prices in general one-
dimensional diffusions. In this section, we shall illustrate that following the road map in §2, it is possible to
derive the closed-form expansion pricing formulas (13) up to any order J ∈� under the general one-dimensional
diffusion models by explicitly computing related general coefficients ìj4z5 for j = 0111 : : : 1 J defined in (14).
The computation procedure can be regarded as a generalization of that under the BSM as discussed in §3.

By (10) and (14) we obtain

ì04z5=Eê04z51 with ê04z5= 4Z0 − z5+

and

ìk4z5=Eêk4z51 with êk4z5=
∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!

¡4l5T 4Z05

¡xl
Yi11 j1

Yi21 j2
1 : : : 1 Yil1 jl 1 for k ≥ 11 (33)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

22
2.

29
.9

3.
10

] 
on

 0
9 

A
pr

il 
20

15
, a

t 2
2:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Cai, Li, and Shi: Pricing Discretely Monitored Asian Options in Diffusion Models
798 Mathematics of Operations Research 39(3), pp. 789–822, © 2014 INFORMS

where êk4z5 for k ≥ 1 are derived via the chain rule of differentiation, T 4 · 5 is a function defined as

T 4x5 2= 4x− z5+1

and the index set Sk is specified as

Sk =
{

4l1 i1 j5 � l ∈�1 i= 4i11 i21 : : : 1 il5 ∈ 81121 : : : 1m9l1 j= 4j11 j21 : : : 1 jl5

with ji ≥ 1 for i = 11 : : : 1 l and j1 + j2 + · · · + jl = k
}

0 (34)

To calculate Yk1 j , we need to differentiate X4k1 �5≡ S4�2i5 w.r.t. � to obtain Fk1 j for j ∈� and k = 11 : : : 1m
and then substitute the results into (9).

Unlike the BSM, the SDE (1) for S4t5 in the general diffusion may not have an analytical solution. Therefore,
X4k1 �5 in (3) may not have an analytical expression that can be differentiated directly w.r.t. �. Instead, motivated
by Watanabe [64], we can write (3) as an equivalent Stratonovich form

dX4t1 �5= �2b4X4t1 �55dt + ��4X4t1 �55 �dW4t51

where “�” represents the Stratonovich integration. Then applying the Itô-Stratonovich formula repeatedly (see,
e.g., Kloeden and Platen [37]) yields the expressions of general Fk1 j for j ∈� and k = 11 : : : 1m.

Lemma 4.1. The coefficients Fk1 j in (8) can be expressed as a linear combination of iterated Stratonovich
integrals:

Fk1 j =
∑

�i�=j

Ci4s05Ji4k51 for j ∈� and k = 11 : : : 1m1 (35)

where, for any index i= 4i11 : : : 1 in5 ∈ 80119n, Ji4t5 denotes an iterated Stratonovich integral

Ji4t5 2=
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
�dWin

4tn5 · · · � dWi2
4t25 � dWi1

4t151

with W14t5 2=W4t5 and W04t5 2= t. The coefficient Ci4s05 is given by

Ci4s05=Ain
4· · · 4Ai2

4�i1
5554s051 (36)

with �14x5≡ �4x5 and �04x5≡ b4x5 2=�4x5−
1
2�4x5�

′4x5. Here two differential operators

A0 2= b4s05
¡

¡x
and A1 2= �4s05

¡

¡x
(37)

map real valued functions to real valued functions, and �i� is a norm of the index i defined as

�i� = n+ #8� ∈ 81121 : : : 1 n92 i� = 090 (38)

Proof. This is an immediate result of Theorem 3.3 in Watanabe [64]. �
Remark 4.1. Given the explicit forms of �4 · 5 and �4 · 5, all the coefficients Ci4s05 can be explicitly calcu-

lated via any symbolic computation package such as Mathematica.
In particular, we have

Fk11 = �4s05J4154k5 and J4154k5=

∫ k

0
�dW4t15=W4k51 for k = 11 : : : 1m0

Thus by (9) and (12),

Z0 =

m
∑

k=1

Yk10 =

m
∑

k=1

Fk11

�4s05�
=

m
∑

k=1

W4k5

�
1

which is the same as in the BSM case. Therefore, � can also be selected as (18) such as Z0 has a standard
normal distribution. It follows that under any general one-dimensional diffusion model, ì04z5 is the same as in
the BSM case and given by (19).

As for ìk4z5 for k ≥ 1, a similar idea of conditioning on Z0 as under the BSM implies that the calculation
can be reduced to the computation of the following conditional expectation

P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5 2=E

( l
∏

r=1

Jir 4ir5

∣

∣

∣

∣

Z0 = z

)

≡E

( l
∏

r=1

Jir 4ir5

∣

∣

∣

∣

m
∑

k=1

W4k5= �z

)

1 (39)
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for integers l, i1, i21 : : : 1 il ≥ 1 and indices i11 i21 : : : 1 il, its integration

I4P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 2=

∫ �

z
P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
4u5�4u5du1 (40)

and its differentiations

Di4P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 2=

¡i

¡zi

[

P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5�4z5

]

1 for i = 0111 : : : 0 (41)

In fact, using the operators I and D, R4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 and Q

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 defined in (24) and (25) under the

BSM can be expressed as

R
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5≡I4M

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
54z5 and Q

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5= −D4154M

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
54z5.

In the following theorem, we explicitly derive ìk4z5 for k ∈� in terms of P 4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5, I4P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5,

and Di4P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5, which immediately leads to the general expansion formula of the discretely monitored

Asian option price under the general diffusion model.

Theorem 4.1. Assuming the existence of bounded derivatives of all orders for the drift and volatility func-
tions �4 · 5 and �4 · 5 as well as �4s05 6= 0, then the asymptotic expansion (13) holds as ã→ 0. The coefficients
ìk4z5 can be expressed explicitly as

ì04z5= zN4z5+�4z5− z1

ìk4z5 =
1

�4s05�

m
∑

i=1

∑

�i�=k+1

[

Ci4s05I4P
4i5

4i5 54z5
]

+
∑

l ≥ 21 4l1 4i11 i21 : : : 1 il51
4j11 j21 : : : 1 jl55 ∈Sk

{

4−15l−2

l!

(

1
�4s05�

)l
∑

�i1�=j1+11 : : : 1�il�=jl+1

[( l
∏

r=1

Cir
4s05

)

Dl−24P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5

]}

1

for any k ≥ 11 (42)

where Sk, Ci4s05, � · �, P 4i11i21 : : : 1il5

4i11i21 : : : 1il5
, I4 · 5, and Di4 · 5 are defined in (34), (36), (38), (39), (40), and (41),

respectively.

Proof. See Appendix B.

To explicitly calculate the expansion pricing formula (13) or equivalently ìk4z5 in (42) for k ∈ �, the cru-
cial step is to explicitly compute P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5, I4P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 and Di4P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 defined in (39), (40)

and (41), respectively. In §§4.1–4.3, we shall provide a systematic method to achieve this objective.

4.1. Computing the conditional expectation P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5 in (39). Note that (39) is a novel type of

iterated-integral-related conditional expectation because on the one hand, the involved iterated Stratonovich inte-
grals have different upper limits, and on the other hand, the condition is path dependent. Iterated stochastic
integrals have been playing an important role in (both theoretical and applied) probability and stochastic mod-
eling; see, e.g., Kloeden and Platen [37], Kunitomo and Takahashi [41], Nualart [50], Peccati and Taqqu [51],
and Yoshida [65]. However, most existing computational methods for iterated-integral-related conditional expec-
tations are usually devoted to the simpler case where iterated integrals have the same upper limits and are
conditional only on the value of the underlying Brownian motion at the time of the upper limit.

One theoretical contribution of our paper is to develop a systematic method to explicitly calculate this novel
type of iterated-integral-related conditional expectation (39). To begin with, we apply the law of iterated condi-
tioning to obtain that

E

( l
∏

r=1

Jir 4ir5

∣

∣

∣

∣

m
∑

k=1

W4k5= �z

)

=E

[

E

( l
∏

r=1

Jir 4ir5

∣

∣

∣

∣

W4151W4251 : : : 1W4m5

)

∣

∣

∣

∣

m
∑

k=1

W4k5= �z

]

0 (43)

If we can show that the inside conditional expectation is a multivariate polynomial in W4151W4251 : : : 1W4m5,
then the conditional expectation (39) can be simply represented as a linear combination of conditional cross-
moments M

4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 defined in (23). Indeed, suppose it can be shown that

E

( l
∏

r=1

Jir 4ir5

∣

∣

∣

∣

W4151 : : : 1W4m5

)

=
∑

n11n21 : : : 1nm

c4n11 n21 : : : 1 nm5W415n1W425n21 : : : 1W4m5nm1 (44)
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with coefficients c4n11 n21 : : : 1 nm5 for nonnegative integers n11 n21 : : : 1 nm. It follows that

E

( l
∏

r=1

Jir 4ir5

∣

∣

∣

∣

m
∑

k=1

W4k5= �z

)

=
∑

n11n21 : : : 1nm

c4n11 n21 : : : 1 nm5E

[

W415n1W425n21 : : : 1W4m5nm
∣

∣

∣

∣

m
∑

k=1

W4k5= �z

]

=
∑

n11n21 : : : 1nm

c4n11 n21 : : : 1 nm5E4B
n1
1 4

√
2B25

n21 : : : 1 4
√
mBm5

nm �Z0 = z5

=
∑

n11n21 : : : 1nm

[

c4n11 n21 : : : 1 nm5

( m
∏

i=1

ini/2

)

M
4n11n21 : : : 1nm5

4112 : : : 1m5 4z5

]

1 (45)

where the second equality holds because of the definition of Bi in (4).

Remark 4.2. Interestingly, (45) implies that M 4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 is a fundamental building block of the com-

putations of the expansion pricing formulas not only under the BSM but also under the general diffusions.
Moreover, (45) also reflects how the computations under the general diffusions generalize those under the BSM.

As discussed in Lemma 3.1 and Remark 3.1, M 4n11n21 : : : 1nm5

4112 : : : 1m5 4z5 can be explicitly calculated via any symbolic
computation package such as Mathematica. Therefore, what is left is to

(I) show (44) really holds, i.e., the LHS of (44) is a multivariate polynomial of W4151 : : : 1W4m5; and
(II) study how to compute the coefficients c4n11 n21 : : : 1 nm5 in (44) explicitly.
First, applying the general recursion algorithm in (2.34) of Kloeden and Platen [37], we can convert each

iterated Stratonovich integral Jir 4ir5 on the LHS of (44) to a linear combination of iterated Itô integrals. Thus,
by such a conversion algorithm and interchanging the order of multiplication and summation, we have that

l
∏

r=1

Jir 4ir5=

l
∏

r=1

∑

jr

Ijr 4ir5=
∑

4k11k21 : : : 1kl5

l
∏

r=1

Ikr 4ir51 (46)

where the summations are taken over all patterns of the indices resulted from the related conversions, and Ii4t5
denotes the iterated Itô integral

Ii4t5 2=
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
dWin

4tn51 : : : 1 dWi2
4t25dWi1

4t150

We demonstrate this conversion procedure (46) through a representative example in Appendix C. In general
cases, the conversion can be done via Mathematica systematically; see Kloeden and Platen [37] for more details.

Accordingly, to evaluate the LHS of (44) it suffices to explicitly compute

E

( l
∏

r=1

Ikr 4ir5

∣

∣

∣

∣

W415=w11W425=w21 : : : 1W4m5=wm

)

0

To this end, we intend to remove the condition by constructing a multiply pinned Brownian motion 8W4t51
0 ≤ t ≤m9 such that for any w11w21 : : : 1wm ∈�,

{

W4t510 ≤ t ≤m
}

in law
=
{

W4t5 �W415=w11 : : : 1W4m5=wm10 ≤ t ≤m
}

0

Indeed, such a multiply pinned Brownian motion can be obtained by generalizing the construction of Brownian
bridge (see, e.g., Shreve [56]). Specifically, let 8B4t52 0 ≤ t ≤ m9 be a standard Brownian motion, and define
w0 2= 0. Then 8W4t510 ≤ t ≤m9 can be constructed as

W4t5=

m−1
∑

i=0

14i1 i+154t5
{

wi41 − t + i5+wi+14t − i5+
[

B4t5−B4i5− 4t − i54B4i+ 15−B4i55
]}

0 (47)

It follows that

E

( l
∏

r=1

Ikr 4ir5

∣

∣

∣

∣

W415=w11 : : : 1W4m5=wm

)

=E

( l
∏

r=1

Ikr
4ir5

)

1 (48)
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where

Ii4t5 2=
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
dWin

4tn51 : : : 1 dWi2
4t25dWi1

4t151 (49)

with W14t5≡W4t5 and W04t5≡ t.
Plugging (47) into (49) and using the fundamental properties of Itô calculus, we can calculate E4

∏l
r=1 Ikr

4ir55

explicitly, which leads to a multivariate polynomial in w11w21 : : : 1wm. Then the LHS of (44) must be a mul-
tivariate polynomial in W4151W4251 : : : 1W4m5, and its explicit expression follows immediately from explicit
expressions of E4

∏l
r=1 Ikr

4ir55 and the conversion procedure (46). By (45) we obtain the explicit expression
of P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5 in (39). Without loss of generality, we illustrate the above road map through a representative

example in Appendix C. In general cases, such a calculation procedure can be implemented symbolically.

4.2. Computing I4P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 in (40) and Di4P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 in (41). Assume that applying the method

in §4.1 has yielded an explicit expression (45) for P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5. By (45) we conclude that the calcula-

tion of I4P
4i11i21 : : : 1il5

4i11 i21 : : : 1il5
54z5 and Di4P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 is reduced to the computation of I4M

4n11n21 : : : 1nm5

4112 : : : 1m5 54z5 and

Di4M
4n11n21 : : : 1nm5

4112 : : : 1m5 54z5. We know from Lemma 3.1 that I4M
4n11n21 : : : 1nm5

4112 : : : 1m5 54z5 is a polynomial in z. Assume

M
4n11n21 : : : 1nm5

41121 : : : 1m5 4z5=

n
∑

j=0

ajz
j1

where n 2= n1 + · · · + nm and, as discussed in §2, the coefficients aj can be obtained explicitly. Then, similarly
to Lemma 3.3 under the BSM, we can obtain by Lemma 3.2 that

I4M
4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5=

n
∑

j=0

ajPj4z5 (50)

Di4M
4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5=

n
∑

j=0

aj

di

dzi
6�4z5zj 7=

n
∑

j=0

aj

i
∑

l=max801i−j9

C l
i

j!

4j − i+ l5!
�4l54z5zj−i+l1 (51)

where C l
i = i!/4l!4i− l5!5 and �4l54z5 is the lth derivative of �4z5 given by

�4l54z5= 4−15lHl4z5�4z5

with Hl4z5 denoting the Hermite polynomial of order l. Since the Hermite polynomial has a closed-form expres-
sion Hl4x5= l!

∑�l/2�

r=0 44−15r/4r !4l− 2r5!5542x5l−2r with �x� defined as the largest integer no greater than x, we
can obtain an explicit expression for Di4M

4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5.

4.3. A systematic method for computing the expansion pricing formula up to an arbitrary order under
general diffusions. Summarizing the analysis above leads to the following systematic algorithm for computing
the expansion pricing formula up to an arbitrary order, say the J th-order (J ≥ 1), under general diffusions. This
systematic algorithm can be implemented via any symbolic computation package such as Mathematica.

Step 1. Computing M
4n11 : : : 1nm5

411 : : : 1m5 4z5 involved in (45) by Lemma 3.1.

Step 2. Substituting M
4n11 : : : 1nm5

411 : : : 1m5 4z5 obtained in Step 1 into (45), we can obtain P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5 involved

in (42), where the coefficients c4n11 : : : 1 nm5 are derived by (46), (48), and (49).
Step 3. Plugging P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5 obtained in Step 2 into (50) and (51) yields I4P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 and

Di4P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 involved in (42).

Step 4. Computing Ci4s05 involved in (42).
Step 5. Substituting P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5, I4P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5, Di4P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
54z5 and Ci4s05 obtained in

Steps 2–4 into (42) gives the general coefficient ìk4z5 for k = 0111 : : : 1 J .
Step 6. Given ìk4z5 for k = 0111 : : : 1 J , the expansion pricing formula up to the J th-order follows

immediately from (13).
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4.4. Explicit expansion pricing formulas up to the third order. From the general algorithm presented
in §4.3, we can see that the key step is to derive P

4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5 involved in (42). For illustration, in this subsection

we provide the explicit expressions of P 4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5 that are required for the computations of ì14z5, ì24z5, and

ì34z5, leading to a closed-form expansion pricing formula up to the third order. (For these first three correction
terms, the explicit computation can be done either simply by hand or by a Mathematica program following the
general algorithm in §4.3.) More precisely, from (42) in Theorem 4.1 we obtain

ì14z5 =

m
∑

i=1

1
�4s05�

[

C4054s05I4P
4i5

40554z5+C411154s05I4P
4i5

4111554z5
]

1 (52)

ì24z5 =

m
∑

i=1

1
�4s05�

[

C401154s05I4P
4i5

4011554z5+C411054s05I4P
4i5

4110554z5+C41111154s05I4P
4i5

411111554z5
]

+
1
2

m
∑

i11 i2=1

(

1
�4s05�

)2
[

C4054s05C4054s05P
4i11 i25

44051 40554z5+ 2C4054s05C411154s05P
4i11 i25

44051 4111554z5

+C411154s05C411154s05P
4i11 i25

4411151 4111554z5
]

�4z51 (53)

ì34z5 =

m
∑

i=1

1
�4s05�

[

C401054s05I4P
4i5

4010554z5+C40111154s05I4P
4i5

401111554z5+C41101154s05I4P
4i5

411011554z5

+C41111054s05I4P
4i5

411110554z5+C4111111154s05I4P
4i5

41111111554z5
]

−
1
6

(

1
�4s05�

)3

×

m
∑

i11 i21 i3=1

[

C4054s05
3D4P

4i11 i21 i35

44051 4051 405554z5+ 3C4054s05
2C411154s05D4P

4i11 i21 i35

44051 4051 41115554z5

+ 3C4054s05C411154s05
2D4P

4i11 i21 i35

44051 411151 41115554z5+C411154s05
3D4P

4i11 i21 i35

4411151411151 41115554z5
]

+

(

1
�4s05�

)2 m
∑

i11 i2=1

[

C4054s05C401154s05P
4i11 i25

440514011554z5+C4054s05C411054s05P
4i11 i25

44051 4110554z5

+C4054s05C41111154s05P
4i11 i25

44051 411111554z5+C411154s05C401154s05P
4i11 i25

4411151 4011554z5

+C411154s05C411054s05P
4i11 i25

4411151 4110554z5+C411154s05C41111154s05P
4i11 i25

4411151411111554z5
]

0 (54)

The following lemma provides explicit expressions of P 4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5 involved in (52), (53), and (54).

Lemma 4.2. The involved conditional expectations P 4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z5 in (52), (53), and (54) are explicitly given

as follows in terms of conditional cross-moments M
4p11p21 : : : 1ps5

4i11i21 : : : 1is5
4z5 defined in (23):

Those involved in ì14z5:

P
4i5

4054z5= i1 P
4i5

411154z5=
i

2
M

425
4i5 4z53

Those involved in ì24z5:

P
4i5

41111154z5=
i
√
i

6
M

435
4i5 4z51 P

4i11 i25

44051 40554z5= i1i21

P
4i11 i25

44051 4111554z5=
i1i2
2

M
425
4i25

4z51 P
4i11 i25

4411151 4111554z5=
i1i2
4

M
42125
4i11 i25

4z51

P
4i5

401154z5=

i−1
∑

k=1

√
kM

415
4k5 4z5+

1
2

√
iM

415
4i5 4z51 P

4i5

411054z5= −

i−1
∑

k=1

√
kM

415
4k5 4z5+

(

i−
1
2

)

√
iM

415
4i5 4z53

Those involved in ì34z5

P
4i5

401054z5=
i2

2
1 P

4i5

4111111154z5=
i2

24
M

435
4i5 4z51

P
4i11 i21 i35

44051 4051 40554z5= i1i2i31 P
4i11 i21 i35

44051 4051 4111554z5=
i1i2i3

2
M

425
4i35

4z51

P
4i11 i21 i35

44051 411151 4111554z5=
i1i2i3

4
M

42125
4i21 i35

4z51 P
4i11 i21 i35

4411151411151 4111554z5=
i1i2i3

8
M

4212125
4i11 i21 i35

4z51
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P
4i11 i25

44051 411111554z5=
i1i2

√
i2

6
M

435
4i25

4z51 P
4i11 i25

4411151 411111554z5=
i1i2

√
i2

12
M

43125
4i21 i15

4z51

P
4i11 i25

44051 4110554z5= i1P
4i25

411054z51 P
4i11 i25

44051 4011554z5= i1P
4i25

401154z51

P
4i11 i25

4411151 4011554z5=
i1
2

i2−1
∑

k=1

√
kM

41125
4k1 i15

4z5+
i1

√
i2

4
M

41125
4i21 i15

4z51

P
4i11 i25

4411151 4110554z5= −
i1
2

i2−1
∑

k=1

√
kM

41125
4k1 i15

4z5+ i1
√

i2

(

i2 −
1
2

)

M
41125
4i21 i15

4z51

P
4i5

40111154z5=
i
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1
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∑
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kM
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1
6
iM
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1
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i−1
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√

k4k+ 15M 41115
4k1 k+154z51

P
4i5

41101154z5= −
i

6
−

2
3

i−1
∑

k=1

kM
425
4k5 4z5+

1
6
iM

425
4i5 4z5−

1
3

i−1
∑

k=1

√

k4k+ 15M 41115
4k1 k+154z5+

i−1
∑

k=1

√
kiM

41115
4k1 i5 4z51

P
4i5

41111054z5=
i2

2
M

425
4i5 4z5−P

4i5

40111154z5−P
4i5

41101154z50

Proof. See Appendix C.

5. Numerical examples. This section illustrates the numerical performance of our closed-form expansion
formulas up to the third order under several one-dimensional diffusion models, including the BSM, the CIR
model, the general CEV model, and the Brennan-Schwartz process. Note that these tested models encompass not
only diffusion models that satisfy the regularity conditions, e.g., the BSM and the Brennan-Schwartz process,
but also those that violate the conditions such as the CIR model and the general CEV model. However, we can
see that in comparison with the benchmarks existing in the literature or obtained via Monte Carlo simulation,
our numerical method is consistently accurate, efficient, and robust in all of these models.

All the computations in the numerical parts of this paper are conducted on a desktop computer with 2.85 GB
of RAM and an Intel Core i5-2500 (3.3 GHz) processor.

5.1. The BSM. Table 2 gives numerical results of prices, deltas, and gammas (denoted by “AE”) of dis-
cretely monitored Asian options under the BSM via our asymptotic expansion formula up to the third order. We
let the strike K vary from 80 to 120 with increment 5 and consider two different monitoring frequencies, monthly
(m = 12) and daily (m = 250). It can be seen that all the AE results stay within the 95% confidence intervals
of the Monte Carlo simulation results (denoted by “MC”). The average of (absolute values of) absolute errors
for prices, deltas, and gammas are 0.00132, 0.00003, and 0.00028, respectively, when m = 250, and 0.00358,
0.00022, and 0.00032, Respectively, when m= 12. This implies that our method is accurate and robust in that it
performs well for a wide range of strikes and even for seemingly long monitoring intervals such as ãt = 1/12,
i.e., the monthly monitored case. Besides, to generate one AE result of price, delta, and gamma, it takes only
approximately 0.002, 0.05, and 0.07 seconds, respectively, when m = 12, and 0.13, 0.30, and 0.45 seconds,
respectively, when m= 250. It is worth mentioning that the CPU times reported in this paper correspond to the
numerical calculations given that the coefficients of the expansion have been precomputed. Otherwise, it would
be computationally expensive to recompute the expansion formula.

Figure 1 demonstrates how the expansion formulas converge across the strikes as the number of correction
terms increases in all six cases of Table 2, namely, for prices, deltas, and gammas with m = 12 and m = 250,
respectively. It suggests that our expansion formulas converge quite fast so that the results up to the third order
have achieved a high accuracy.

We also compare our asymptotic expansion numerical results with those obtained through other existing
methods in the literature, including the recursive integration method by Fusai and Meucci [24], the maturity-
randomization-based recursive method by Fusai et al. [25], and an improved convolution pricing algorithm by
Cerny and Kyriakou [15]; see Tables 3, 4, and 5, respectively. We find that all the absolute errors between our AE
results and the 30 benchmarks are no greater than 0.003 (the average error is 0.00151). It is worth pointing out
that these benchmarks consist of various parameter settings, including different monitoring frequencies such as
daily, weekly, and monthly, different model parameters such as interest rate and volatility, and different contract
parameters such as the strike. Therefore, Tables 3–5 also imply that our pricing method is accurate and robust.
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Table 2. Prices, deltas, and gammas of discretely monitored Asian options under the BSM. Parameters are r = 0005, � = 003, S0 = 100,
and T = 1. The columns “AE” denote our asymptotic expansion results up to the third order, and the columns “MC” and “Std. err.” denote
Monte Carlo simulation estimates and associated standard errors obtained by simulating 110001000 sample paths. “Abs. err.” is the absolute
error between “AE” and “MC.” We can see all the AE results lie in the 95% confidence intervals of the associated MC estimates even in
the case of quite small m= 12. Besides, to generate one AE result of price, delta, and gamma via our method, it takes only approximately
0.002, 0.05, and 0.07 seconds respectively when m= 12, and 0.13, 0.30, and 0.45 seconds, respectively, when m= 250.

m= 250 m= 12

K AE MC Std. err. Abs. err. AE MC Std. err. Abs. err.

Prices of discretely monitored Asian call options under the BSM

80 21090348 21090509 0000180 −0000161 21085858 21086143 0000169 −0000285
85 17072261 17072419 0000268 −0000158 17065195 17065537 0000256 −0000342
90 13094619 13094775 0000359 −0000156 13085170 13085599 0000348 −0000429
95 10066810 10066958 0000438 −0000148 10055718 10056157 0000428 −0000439

100 7093672 7093805 0000493 −0000133 7081970 7082374 0000484 −0000404
105 5074995 5075069 0000519 −0000074 5063691 5064012 0000511 −0000321
110 4006364 4006453 0000517 −0000089 3096220 3096543 0000509 −0000323
115 2080720 2080835 0000490 −0000115 2072161 2072514 0000483 −0000353
120 1089964 1090117 0000447 −0000153 1083112 1083440 0000440 −0000328

Deltas of discretely monitored Asian call options under the BSM

80 0094898 0094891 0000012 0000007 0091759 0091758 0000017 0000001
85 0085677 0085679 0000022 −0000002 0086045 0086079 0000022 −0000034
90 0077658 0077661 0000026 −0000003 0077939 0077966 0000026 −0000027
95 0067830 0067832 0000028 −0000002 0067937 0067936 0000028 0000001

100 0057032 0057034 0000029 −0000002 0056931 0056895 0000029 0000036
105 0046205 0046207 0000030 −0000002 0045917 0045867 0000030 0000050
110 0036145 0036147 0000031 −0000002 0035729 0035742 0000031 −0000013
115 0027379 0027381 0000031 −0000002 0026905 0026922 0000031 −0000017
120 0020140 0020145 0000031 −0000005 0019667 0019688 0000031 −0000021

Gammas of discretely monitored Asian call options under the BSM

80 0000730 0000764 0000024 −0000034 0000719 0000719 0000023 0000000
85 0001175 0001176 0000031 −0000001 0001181 0001206 0000031 −0000025
90 0001628 0001621 0000037 0000007 0001652 0001687 0000038 −0000035
95 0001989 0002030 0000043 −0000041 0002028 0001988 0000042 0000040

100 0002193 0002246 0000046 −0000053 0002234 0002204 0000046 0000030
105 0002217 0002217 0000047 0000000 0002251 0002174 0000047 0000077
110 0002085 0002056 0000046 0000029 0002105 0002145 0000047 −0000040
115 0001844 0001790 0000044 0000054 0001850 0001848 0000045 0000002
120 0001551 0001582 0000042 −0000031 0001544 0001585 0000042 −0000041

Table 3. Comparison with numerical results obtained by Fusai and Meucci [24]. Other parameters are S0 = 100,
r = 000367, � = 0017801, and T = 1. The column “AE” represents our asymptotic expansion results up to the third order,
and the column “Fusai and Meucci” is taken from Table 5 in Fusai and Meucci [24].

m K AE Fusai and Meucci Abs. err.

Comparison with numerical results in Fusai and Meucci [24]

12 90 11090363 11090497 −0000134
100 4088072 4088210 −0000138
110 1036173 1036314 −0000141

50 90 11093171 11093301 −0000130
100 4093602 4093736 −0000134
110 1040127 1040264 −0000137

250 90 11093935 11094068 −0000133
100 4095098 4095233 −0000135
110 1041214 1041351 −0000137

Note that Fusai and Meucci [24], Fusai et al. [25], and Cerny and Kyriakou [15] are all focused on gen-
eral exponential Lévy models, whereas our paper deals with one-dimensional diffusion models, which are
nonexponential-Lévy except the BSM. In §§5.2 and 5.3, we shall provide numerical examples to demonstrate
our method’s performance in the nonexponential-Lévy case.
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Figure 1. Convergence of asymptotic expansions for prices, deltas, and gammas of discretely monitored Asian options under the BSM.
Parameters are r = 0005, � = 003, S0 = 100, and T = 1. The upper three plots correspond to m= 250, whereas the lower three m= 12. The
reference true values are Monte Carlo simulation estimates obtained by simulating 1,000,000 sample paths.

Table 4. Comparison with three numerical results obtained by Fusai et al. [25]. Other parameters are S0 =K = 100 and
T = 1. The column “AE” represents our asymptotic expansion results up to the third order, and the column “Fusai et al.”
is taken from Tables 2, 3 and 6 in Fusai et al. [25].

m r � AE Fusai et al. Abs. err.

Comparison with numerical results in Fusai et al. [25]

50 0004 003 7069712 7069859 −0000147
50 0004 001 4048589 4048842 −0000253

250 000367 0017801 4095098 4095212 −0000214

Table 5. Comparison with numerical results in Cerny and Kyriakou [15]. Other parameters are S0 = 100, r = 000367, � = 0017801, and
T = 1 for the left panel, and S0 = 100, r = 0004, m = 50, and T = 1 for the right panel. The columns “AE” represent our asymptotic
expansion results up to the third order, and the columns “C&K” are taken from Tables 4 and 7 in Černỳ and Kyriakou [15].

Prices when m varies Prices when � varies

m K AE C&K Abs. err. � K AE C&K Abs. err.

Comparison with numerical results in Černỳ and Kyriakou [15]

12 90 11090363 11090492 −0000129 001 90 11057841 11058113 −0000272
100 4088072 4088196 −0000124 100 3033766 3033861 −0000095
110 1036173 1036304 −0000141 110 0027085 0027375 0000290

50 90 11093171 11093294 −0000123 002 90 13066835 13066981 −0000146
100 4093602 4093720 −0000118 100 7069712 7069859 −0000147
110 1040127 1040252 −0000125 110 3089489 3089639 −0000150

250 90 11093935 11094056 −0000121 003 90 17019090 17019239 −0000149
100 4095098 4095216 −0000118 100 12009000 12009153 −0000153
110 1041214 1041337 −0000123 110 8031281 8031441 −0000160
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Table 6. Comparison with numerical results in Ju [34]. The parameters are the same as in Table 4 in Ju [34], i.e., S0 = 100, r = 0009 and
T = 3. The column “Ju” obtained by Ju’s Taylor expansion method up to the sixth order is taken from Table 4 in Ju [34], and the column
“AE” denotes our asymptotic expansion results up to the sixth order. The columns “MC” (Monte Carlo simulation estimates) and “Std. err.”
(standard errors) are also taken from Table 4 in Ju [34]. “Abs. err. of AE” (respectively, “Abs. err. of Ju”) is the absolute error between
“AE” (resp., “Ju”) and “MC.” Following Ju [34], we also use the root of mean-squared error (RMSE) to measure the overall accuracy for
a whole set of options, and the maximum absolute error (MAE) to indicate the worst case. We can see that our method produces more
accurate results than Ju’s because our RMSE and MAE are both smaller than Ju’s. Besides, it takes 0.1 seconds to generate one AE result.

(�1K) AE Ju MC Std. err. Abs. err. of AE Abs. err. of Ju

Comparison with numerical results in Ju [34]

400051955 1500951 1501197 1501199 000002 −000248 −000002
4000511005 1103119 1103069 1103071 000002 000048 −000002
4000511055 705417 705562 705563 000002 −000146 −000001

40011955 1502137 1502165 1502171 000007 −000034 −000006
400111005 1106349 1106394 1106399 000007 −000050 −000005
400111055 803923 803913 803919 000007 000004 −000006

40021955 1606366 1606365 1606366 000026 000000 −000001
400211005 1307691 1307634 1307654 000026 000037 −000020
400211055 1102176 1102135 1102174 000026 000002 −000039

40031955 1900160 1900179 1900194 000009 −000034 −000015
400311005 1605882 1605755 1605812 000009 000070 −000057
400311055 1403789 1403774 1403874 000009 −000085 −000100

40041955 2107338 2107307 2107331 000018 000007 −000024
400411005 1905788 1905690 1905798 000018 −000010 −000108
400411055 1706168 1705978 1706164 000018 000004 −000186

40051955 2405577 2405583 2405585 000031 −000008 −000002
400511005 2206183 2206032 2206167 000031 000016 −000135
400511055 2008352 2008023 2008289 000031 000063 −000266

RMSE 000077 000092
MAE 000248 000266
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Figure 2. How the absolute errors (between the prices obtained via our expansion formula up to the third order and the benchmark
computed through Monte Carlo simulation) change as m varies in the cases of in the money (K = 80 and 90), at the money (K = 100), and
out of the money (K = 110 and 120). Parameters are r = 0006, � = 002, S0 = 100, and ã= 1/250. We can see that the absolute errors tend
to increase as m rises.

Besides, we compare our numerical results with those obtained via the Taylor expansion method (up to the
sixth order) under the BSM by Ju [34]. See Table 6. Following Ju [34], we also use the root of mean-squared
error (RMSE) to measure the overall accuracy for a whole set of options, and use the maximum absolute error
(MAE) to indicate the worst case. It can be seen that our expansion formula up to the sixth order can produce
more accurate numerical results than Ju’s expansion method up to the sixth order because our RMSE and MAE
are both smaller than Ju’s. It is worth pointing out that the parameters used in Ju [34] are not that usual. For
example, the risk-free interest rate is 9%; the maturity is three years; the volatility can be as small as 0.05.
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Table 7. Prices and deltas of discretely monitored Asian options under the Brennan-Schwartz process. Parameters are r = 0005, �= 001,
� = 120, � = 0025, S0 = 100, and T = 1. The columns “AE” represent our asymptotic expansion results up to the third order, and the
columns “MC” and “Std. err.” denote Monte Carlo simulation estimates and associated standard errors obtained by simulating 2001000
sample paths. “Abs. err.” is the absolute error between “AE” and “MC.” We can see that all the AE results lie in the 95% confidence
intervals of the associated MC estimates. In addition, to generate one AE result of price and delta, it takes approximately 0.001 and 0.002
seconds respectively when m= 12, and 0.1 and 0.2 seconds, respectively, when m= 250.

m= 250 m= 12

K AE MC Std. err. Abs. err. AE MC Std. err. Abs. err.

Prices of discretely monitored Asian call options under the Brennan-Schwartz process

80 20013363 20013789 0000242 −0000426 20010687 20010805 0000224 −0000118
85 15075659 15076048 0000411 −0000389 15070458 15070572 0000389 −0000114
90 11079768 11079996 0000604 −0000228 11071851 11071667 0000583 0000184
95 8042197 8041832 0000775 0000365 8032298 8032048 0000756 0000250

100 5072567 5072168 0000881 0000399 5062035 5062267 0000862 −0000232
105 3071040 3070959 0000903 0000081 3061241 3061994 0000884 −0000753
110 2029709 2029621 0000850 0000089 2021557 2022243 0000830 −0000686
115 1036297 1036258 0000745 0000039 1030124 1030592 0000725 −0000468
120 0077865 0077857 0000616 0000008 0073563 0074014 0000596 −0000451

Deltas of discretely monitored Asian call options under the Brennan-Schwartz process

80 0087182 0087230 0000052 −0000049 0087482 0087515 0000050 −0000033
85 0082117 0082232 0000071 −0000115 0082508 0082616 0000069 −0000107
90 0073757 0073855 0000091 −0000099 0074098 0074227 0000090 −0000128
95 0062515 0062634 0000106 −0000119 0062657 0062694 0000106 −0000037

100 0049754 0049694 0000114 0000060 0049627 0049486 0000113 0000142
105 0037177 0037112 0000112 0000065 0036822 0036790 0000112 0000032
110 0026156 0026110 0000104 0000046 0025678 0025733 0000103 −0000055
115 0017391 0017305 0000091 0000086 0016898 0016859 0000090 0000039
120 0010957 0010961 0000076 −0000004 0010521 0010593 0000075 −0000072

In fact, for more usual parameters, our expansion formula up to the third order usually has achieved a high
accuracy.

To illustrate the effect of the number of monitoring intervals m on the accuracy of our asymptotic expansion
method, we fix ã = 1/250 and let m vary from 50 to 250 with increment 50. Figure 2 demonstrates how the
absolute errors (between the prices obtained via our expansion formula up to the third order and the benchmark
computed through Monte Carlo simulation) change as m varies in the cases of in the money (K = 80 and 90),
at the money (K = 100), and out of the money (K = 110 and 120). We can see that the absolute errors tend to
increase as m rises.

5.2. The Brennan-Schwartz process. Table 7 provides numerical results of prices and deltas (denoted by
AE) of discretely monitored Asian options under the Brennan-Schwatz process (specified in Table 1) via our
asymptotic expansion formula up to the third order; see, e.g., Pilipovic [52] for the applications of the Brennan-
Schwatz process in financial modeling of the commodity market. We can see that all the AE results stay within
the 95% confidence intervals of the Monte Carlo simulation results (denoted by MC). The average of (absolute
values of) absolute errors for prices and deltas are 0.00225 and 0.00071, respectively, when m = 250, and
0.00362 and 0.00072, respectively, when m = 12. In addition, to generate one AE result of price and delta, it
takes approximately 0.001 and 0.002 seconds, respectively, when m= 12, and 0.1 and 0.2 seconds, respectively,
when m= 250. Similarly to Figure 1, Figure 3 indicates that our expansion formulas converge quite fast as the
number of correction terms increases in all four cases of Table 7.

5.3. The general CEV model. The CEV model (specified in Table 1) is a very important asset pricing
model. On the one hand, it includes several well-known models as special cases, e.g., the BSM (�= 0) and the
CIR model (�= −1/2). On the other hand, the flexibility of the selection of � makes it capable of modeling the
volatility smile effect in the equity index option market (see Jackwerth and Rubinstein [33]). Furthermore, some
novel financial models derived from the CEV model have also won great popularity in the financial industry.
For example, the jump to default extended CEV model proposed by Carr and Linetsky [13] unifies the valuation
of credit derivatives and equity derivatives (see also Mendoza-Arriaga and Linetsky [49]), and the stochastic
alpha-beta-rho (SABR) model proposed by Hagan et al. [30] is able to provide good fits to various types of
implied volatility curves observed in the marketplace.
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Figure 3. Convergence of asymptotic expansions for prices and deltas of discretely monitored Asian options under the Brennan-Schwartz
process. Parameters are r = 0005, �= 001, �= 120, � = 0025, S0 = 100, and T = 1. The reference true values are Monte Carlo simulation
estimates obtained by simulating 200,000 sample paths.

It is worth pointing out that option pricing under the CEV model needs to be dealt with carefully. Specifically,
when � > 0, the discounted CEV process is a strict local martingale, and when � < 0, the CEV process has
a killing boundary at zero (zero is either an exit boundary when � ∈ 6−1/2105, or is a regular boundary
when � < −1/2 and is then specified as a killing boundary by adjoining a killing boundary condition) and
the transition density is norm defective. To deal with these two issues, one can regularize the CEV process to
achieve bounded volatility by “freezing” the volatility for the stock prices above certain high level and below
certain low level, respectively. For more details, we refer to, e.g., Emanuel and MacBeth [20], Andersen and
Andreasen [2], Davydov and Linetsky [18], Carr and Linetsky [13], and Lewis [43]. It turns out that in either
case, our asymptotic expansion produces approximations to the Asian option prices for the aforementioned
“regularized” CEV process with bounded volatility. See Appendix E for more detailed discussions.

Since the BSM, a special case of CEV with � = 0, has been discussed extensively in §5.1, we concentrate
on three other cases of CEV with � equal to 1/4, −1/4, and −1/2 (CIR), respectively. It turns out that for all
these three cases, our asymptotic expansions up to the third order are accurate and efficient for both prices and
Greeks such as deltas. Indeed, Table 8 indicates that all the prices and deltas lie in the 95% confidence intervals
of associated Monte Carlo simulation estimates, and the average errors of prices and deltas are 0.00931 and
0.00074, respectively. Similarly to the case of the BSM, our method remains efficient and it takes approximately
0.2 seconds (0.4 seconds, respectively) to produce one numerical result of the price (the delta, respectively).
Moreover, our method is quite robust because it performs consistently well across various strikes K and elas-
ticities �. Similarly as in §§5.1 and 5.2, Figure 4 demonstrates that our expansion formulas under general CEV
models converge quite fast.

Note that our expansion method can also deal with European options that correspond to the special case m= 1
of the discretely monitored Asian options. Table 9 reports the European option prices and deltas obtained via
our expansion method as well as the analytical formula (see, e.g., (32) in Davydov and Linetsky [18]) under
the CEV model. We can see that our method is accurate with the average errors of prices and deltas being
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Table 8. Prices and deltas of discretely monitored Asian options under the CEV model with � = 1/4, −1/4, and −1/2 (CIR model).
Parameters are r = 0005, S0 = 100, �S�

0 = 0025, T = 1, and m = 250. The columns “AE” represent our asymptotic expansion results up to
the third order, and the columns “MC” and “Std. err.” denote Monte Carlo simulation estimates and associated standard errors obtained by
simulating 210001000 sample paths for prices and 200,000 sample paths for deltas. “Abs. err.” is the absolute error between “AE” and “MC.”
We can see all the AE results lie in the 95% confidence intervals of the associated MC estimates. Besides, it takes around 0.2 seconds
(0.4 seconds, respectively) to produce one numerical result of the price (the delta, respectively).

Prices Deltas

K AE MC Std. err. Abs. err. AE MC Std. err. Abs. err.

Discretely monitored Asian call options under the CEV model with �= 1/4

80 21060167 21061365 0001000 −0001198 0094653 0094600 0000059 0000053
85 17018468 17019687 0000967 −0001219 0089976 0089929 0000078 0000047
90 13015550 13016780 0000909 −0001230 0081995 0081994 0000098 0000001
95 9067509 9068666 0000826 −0001157 0071007 0071048 0000116 −0000041

100 6084034 6085112 0000726 −0001078 0058252 0058365 0000126 −0000113
105 4066083 4066997 0000617 −0000914 0045335 0045362 0000127 −0000027
110 3007180 3007792 0000510 −0000612 0033614 0033723 0000122 −0000109
115 1096653 1096998 0000413 −0000345 0023873 0023727 0000111 0000146
120 1022841 1023003 0000327 −0000162 0016335 0016206 0000097 0000129

Discretely monitored Asian call options under the CEV model with �= −1/4

80 21067122 21068465 0000971 −0001343 −0093506 0093460 0000054 0000046
85 17028990 17030278 0000933 −0001288 0088533 0088540 0000073 −0000007
90 13026903 13028168 0000872 −0001265 0080568 0080598 0000093 −0000030
95 9075397 9076576 0000787 −0001179 0069779 0069856 0000109 −0000077

100 6084853 6085961 0000684 −0001108 0057141 0057236 0000118 −0000095
105 4058662 4059619 0000573 −0000957 0044099 0044145 0000119 −0000046
110 2092962 2093639 0000462 −0000677 0032057 0032173 0000112 −0000116
115 1078606 1079026 0000360 −0000420 0021979 0021879 0000100 0000100
120 1004072 1004369 0000273 −0000297 0014247 0014132 0000085 0000115

Discretely monitored Asian call options under the CIR model, i.e., the CEV model with �= −1/2

80 21071428 21072781 0000958 −0001353 0092843 0092810 0000053 0000033
85 17034831 17036129 0000918 −0001298 0087747 0087767 0000071 −0000020
90 13032877 13034152 0000855 −0001275 0079806 0079859 0000090 −0000053
95 9079478 9080661 0000770 −0001183 0069126 0069242 0000106 −0000116

100 6085365 6086478 0000666 −0001113 0056562 0056685 0000114 −0000123
105 4055096 4056065 0000553 −0000969 0043478 0043547 0000115 −0000069
110 2086119 2086827 0000441 −0000708 0031297 0031387 0000108 −0000090
115 1070087 1070538 0000338 −0000451 0021070 0020992 0000095 0000078
120 0095542 0095870 0000250 −0000328 0013268 0013161 0000079 0000107

0.00932 and 0.00072, respectively. Besides, it takes approximately 0.002 seconds (0.003 seconds, respectively)
to generate one numerical result of the price (the delta, respectively).

Under the CIR model, Fusai et al. [26] derived a recursion-based analytical expression for the moment
generating function of the joint distribution of the spot price’s terminal value at maturity and its discretely
monitored average. Then applying the Fourier inversion algorithm, they can price discretely monitored Asian
options numerically in a fast way. Table 10 presents a comparison between our asymptotic expansion results
with those obtained via Fourier inversion in Fusai et al. [26]. It can be seen that our results are very accurate
because the absolute errors are no greater than 0.00002.

6. Concluding remarks. In this paper, a closed-form asymptotic expansion approach is proposed to price
discretely monitored Asian options in one-dimensional diffusion models. We show the convergence of the
expansion rigorously under some regularity conditions and moreover, develop a systematic method for the
purpose of calculating general expansion terms. Numerical experiments suggest that our expansion method with
only a few terms (e.g., four terms up to the third order) is accurate, fast, and easy to implement for a wide
range of diffusion models. Potential future research topics include the extensions of our expansion method
to time-dependent one-dimensional diffusions, multidimensional diffusions, or nonuniform discrete structures.
One may first generalize our approach for time-independent one-dimensional diffusions to the time-independent
multidimensional case. Then the time-dependent one-dimensional diffusion might be dealt with as a special
time-independent two-dimensional diffusion. As regards the nonuniform discrete structure, one potential idea is
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Table 9. Prices and deltas of European call options under the CEV model with �= 1/4, −1/4, and −1/2 (CIR model). The parameters
are the same as in Table 8. The columns “AE” represent our asymptotic expansion results up to the third order, and the columns “True
value” are obtained from the analytical formula (see, e.g., Davydov and Linetsky [18]). “Abs. err.” denotes the absolute error between “AE”
and “True value.” We can see our expansion method is quite accurate. Besides, it takes around 0.002 seconds (0.003 seconds, respectively)
to produce one numerical result of the price (the delta, respectively).

Prices Deltas

K AE True value Abs. err. AE True value Abs. err.

European call options under the CEV model with �= 1/4

80 25027467 25028380 −0000913 0089921 0089897 0000024
85 21047303 21048223 −0000920 0084662 0084633 0000029
90 18003386 18004303 −0000917 0078389 0078348 0000041
95 14098378 14099294 −0000916 0071381 0071333 0000048

100 12032843 12033758 −0000915 0063972 0063921 0000051
105 10005528 10006444 −0000916 0056486 0056439 0000047
110 8013829 8014747 −0000918 0049205 0049168 0000037
115 6054279 6055200 −0000921 0042343 0042322 0000021
120 5022998 5023919 −0000921 0036041 0036039 0000002

European call options under the CEV model with �= −1/4

80 25053970 25054908 −0000938 0087517 0087681 −0000164
85 21072499 21073426 −0000927 0082223 0082350 −0000127
90 18023275 18024296 −0000921 0075981 0076065 −0000084
95 15009495 15010412 −0000917 0069000 0069041 −0000041

100 12032843 12033758 −0000915 0061552 0061555 −0000003
105 9093458 9094375 −0000917 0053931 0053908 0000023
110 7090087 7091008 −0000921 0046420 0046386 0000034
115 6020347 6021276 −0000929 0039267 0039235 0000032
120 4081063 4082003 −0000940 0032661 0032642 0000019

European call options under the CEV model with �= −1/2

80 25068429 25069403 −0000974 0086140 0086439 −0000299
85 21085874 21086830 −0000956 0080844 0081106 −0000262
90 18033753 18034695 −0000942 0074639 0074849 −0000210
95 15015501 15016433 −0000932 0067700 0067850 −0000150

100 12033306 12034234 −0000928 0060269 0060359 −0000090
105 9087961 9088895 −0000934 0052623 0052663 −0000040
110 7078877 7079824 −0000947 0045043 0045049 −0000006
115 6004236 6005203 −0000967 0037788 0037778 0000010
120 4061249 4062239 −0000990 0031071 0030159 0000012

to select the smallest time step as the expansion parameter by expressing other larger time steps as (fractional)
multiples of the smallest one.
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Finance (Ministry of Education) at Peking University, as well as the National Natural Science Foundation of China (Project
11201009).

Appendix A. Proof of Theorem 2.1.

Proof. Our proof is an application of the Malliavin calculus for generalized random variables proposed in Watanabe
[64] and Yoshida [65] as well as the related theory of asymptotic expansion for option pricing established in Kunitomo and
Takahashi [42]. We employ standard notations of the Malliavin calculus (see, e.g., Ikeda and Watanabe [32], Nualart [50]).
Let Z4�5 2=

∑m
k=1 Yk4�51 where Yk4�5 is defined in (6). For any integer n ∈�, we have

Z4�5 2=
m
∑

k=1

Yk4�5=

n
∑

j=0

Zj�
j
+O4�n+151 (A1)
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Figure 4. Convergence of the asymptotic expansions for prices and deltas of discretely monitored Asian options under the CEV models
with �= 1/4, −1/4, and −1/2, respectively. Parameters are r = 0005, S0 = 100, �S�

0 = 0025, T = 1 and m= 250. The reference true values
for prices and deltas are Monte Carlo simulation estimates obtained by using 10,000 time steps and by simulating 2,000,000 and 200,000
sample pathes, respectively.

Table 10. Comparison with numerical results in Fusai et al. [26] under the CIR model. Other parameters are S0 = 1, r = 0004, � = 007,
and T = 1. The rows “AE” represent our asymptotic expansion results up to the third order, and the rows “Fusai et al.” are taken from
Table 4 in Fusai et al. [26]. The rows “Abs. err.” denote the absolute errors between “AE” and “Fusai et al.” It can be seen that our results
are very accurate with absolute errors no greater than 0.00002.

Comparison with numerical results in Fusai et al. [26]

K 0090 0095 1000 1005 1010

m= 12

AE 0.21280 0.18660 0.16283 0.14141 0.12224
Fusai et al. 0.21279 0.18659 0.16282 0.14140 0.12223
Abs. err. 0.00001 0.00001 0.00001 0.00001 0.00001

m= 25

AE 0.21430 0.18811 0.16433 0.14288 0.12366
Fusai et al. 0.21428 0.18810 0.16432 0.14287 0.12365
Abs. err. 0.00002 0.00001 0.00001 0.00001 0.00001

m= 50

AE 0.21502 0.18884 0.16506 0.14359 0.12435
Fusai et al. 0.21501 0.18883 0.16505 0.14359 0.12434
Abs. err. 0.00001 0.00001 0.00001 0.00000 0.00001

m= 100

AE 0.21539 0.18921 0.16543 0.14396 0.12471
Fusai et al. 0.21538 0.18920 0.16542 0.14395 0.12470
Abs. err. 0.00001 0.00001 0.00001 0.00001 0.00001

m= 250

AE 0.21562 0.18944 0.16566 0.14419 0.12493
Fusai et al. 0.21560 0.18943 0.16565 0.14418 0.12492
Abs. err. 0.00002 0.00001 0.00001 0.00001 0.00001
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where Zj =
∑m

k=1 Yk1 j with Yk1 j constructed from (9) and (35). Standard arguments as employed in the proof of Theorem
7.1 in Malliavin and Thalmaier [48] yield that the expansion (A1) can be interpreted in the following sense

∥

∥

∥

∥

Z4�5−

n
∑

j=0

Zj�
j

∥

∥

∥

∥

Ds
p

=O4�n+151

for any p > 1 and s > 0, under the conditions that �4 · 5 and �4 · 5 have bounded derivatives of all orders and �4s05 6= 0.
Here Ds

p denotes the space of Malliavin differentiable variables equipped with the norm

�F �Ds
p
=

[

E�F �
p
+

s
∑

j=1

E�D4j5F �
p

H⊗j

]1/p

for any F ∈Ds
p1

where D4j5F is the jth order Malliavin derivative of F . For simplicity of notations, we use D to represent the first order
Malliavin differentiation operator D415.

To prove that E64Z4�5− z5+7 admits the asymptotic expansion

E64Z4�5− z5+7=
n
∑

j=0

ìj4z5�
j
+O4�n+151 (A2)

our immediate task is to verify that there exists a random sequence 8��9 such that the Malliavin covariance matrix è4�5 2=
�DZ4�51DZ4�5�L24601T 75 satisfies the following two conditions:

• Uniform nondegeneracy under truncation:

sup
�∈60117

E
[

18��≤194det4è4�555−p
]

<+�1 (A3)

• Negligible probability of truncation:

lim
�→0

1
�n

P

(

���
�>

1
2

)

= 01 n ∈�0 (A4)

We will employ the method developed in Kunitomo and Takahashi [41, 42] to complete the verification.
Let us verify (A3) first. Since Z405=

∑m
k=1 W4k5/�, its Malliavin covariance can be easily obtained

è405 2= �DZ4051DZ405�H =

∫ m

0
�DsZ405�

2 ds =

∫ m

0

∣

∣

∣

∣

m
∑

k=1

1
�

18s≤k9

∣

∣

∣

∣

2

ds =
1
�2

m
∑

k=1

4m+ 1 − k52
= 10

Define
�� 2= c

∫ m

0

∣

∣DsZ4�5−DsZ405
∣

∣

2
ds1

where c > 0 is an arbitrary constant. Then we claim that there exists a constant c0 > 0 such that for any c > c0 and any
p > 1, the condition (A3) holds. Indeed, it follows from the triangle inequality that

∣

∣4DsZ4�55
2
− 4DsZ4055

2
∣

∣≤
∣

∣DsZ4�5−DsZ405
∣

∣

2
+ 2�DsZ405�

∣

∣DsZ4�5−DsZ405
∣

∣0

On the set 8�� ≤ 19 we have

�è4�5−è405� =

∣

∣

∣

∣

∫ m

0
4DsZ4�55

2 ds −

∫ m

0
4DsZ4055

2 ds

∣

∣

∣

∣

≤

∫ m

0

∣

∣4DsZ4�55
2
− 4DsZ4055

2
∣

∣ds

≤

∫ m

0

∣

∣DsZ4�5−DsZ405
∣

∣

2
ds +

∫ m

0
2�DsZ405�

∣

∣DsZ4�5−DsZ405
∣

∣ds

≤

∫ m

0

∣

∣DsZ4�5−DsZ405
∣

∣

2
ds + 2

(

∫ m

0
�DsZ405�

2 ds

)1/2(
∫ m

0
�DsZ4�5−DsZ405�

2 ds

)1/2

≤
1
c

+ 2

√

è405
c

0

Hence, there exists c0 such that, for any c > c0 > 0,

�è4�5� ≥è405− �è4�5−è405�>è405−

(

1
c0

+ 2

√

è405
c0

)

0

Thus we obtain (A3) immediately.
Next, we justify the condition (A4). The Cauchy inequality implies

�DsZ4�5−DsZ405�
2
=

∣

∣

∣

∣

m
∑

k=1

(

Ds

X4k1 �5− s0

��4s05�
−

1
�

18s≤k9

)

∣

∣

∣

∣

2

≤m
m
∑

k=1

(

Ds

X4k1 �5− s0

��4s05�
−

1
�

18s≤k9

)2

1
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where we use the fact that Z4�5=
∑m

k=14X4k1 �5− s05/4��4s05�5. Therefore,

∫ m

0
�DsZ4�5−DsZ405�

2 ds ≤m
m
∑

k=1

∫ m

0

(

Ds

X4k1 �5− s0

��4s05�
−

1
�

18s≤k9

)2

ds0

It follows that

P

(

���
� ≥

1
2

)

≤

m
∑

k=1

P

(

∫ m

0

(

Ds

X4k1 �5− s0

��4s05�
−

1
�

18s≤k9

)2

ds ≥
1

2cm2

)

=

m
∑

k=1

P

(

∫ m

0
4DuYk4�5−DuYk4055

2 du≥
1

2cm2

)

0

Following Lemma 7.2 in Kunitomo and Takahashi [42], we conclude that for any k = 1121 : : : 1m and
any n ∈�,

lim
�→0

1
�n

P

(

∫ m

0
4DuYk4�5−DuYk4055

2 du≥
ã

2cm2

)

= 01

which leads to (A4) immediately. The proof is completed.

Appendix B. Proof of Theorem 4.1.

Proof. Since Z0 also has a standard normal distribution under the general diffusions, ì04z5 is the same as in the BSM.
Here we focus on the derivation of ìk4z5 for k ≥ 1. Observing that

¡4l5T 4x5

¡xl
=

{

18x≥z91 if l = 1;

�4l−254x− z51 if l ≥ 21

we deduce from (33) that

ìk4z5 =

m
∑

i=1

E

(

18Z0≥z9

Fi1 k+1

�4s05�

)

+
∑

l≥21 4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!
E

(

�4l−254Z0 − z5
Fi11 j1+1

�4s05�

Fi21 j2+1

�4s05�
· · ·

Fil1 jl+1

�4s05�

)

0

The involved expectations can be further expressed as

E

(

18Z0≥z9

Fi1 k+1

�4s05�

)

=
1

�4s05�

∫ �

z
E4Fi1 k+1 �Z0 = z5�4z5dz

and

E

(

�4l−254Z0 − z5
Fi11 j1+1

�4s05�

Fi21 j2+1

�4s05�
· · ·

Fil1 jl+1

�4s05�

)

=

(

1
�4s05�

)l
∫

�
�4l−254u− z5E4Fi11 j1+1Fi21 j2+1 ldots1 Fil1 jl+1 �Z0 = u5�4u5du

=

(

1
�4s05�

)l

4−15l−2
∫

R
�4u− z5

¡4l−25

¡zl−2

[

E4Fi11 j1+1Fi21 j2+11 : : : 1 Fil1 jl+1 �Z0 = u5�4u5
]

du

= 4−15l−2

(

1
�4s05�

)l
¡4l−25

¡zl−2

[

E4Fi11 j1+1Fi21 j2+11 : : : 1 Fil1 jl+1 �Z0 = z5�4z5
]

1

where the second equality holds because of the integration-by-parts formula for the Dirac-delta function. Indeed, the above
calculations can be rigorously justified through Watanabe [64], which untangled the puzzle on the calculation of expectations
involving Dirac-delta functions.

It follows that

ìk4z5 =

m
∑

i=1

1
�4s05�

∫ �

z
E4Fi1 k+1 �Z0 = u5�4u5du+

∑

l≥214l14i11i21 : : : 1il514j11j21 : : : 1jl55∈Sk

4−15l−2

l!

(

1
�4s05�

)l

×
¡4l−25

¡zl−2

[

E4Fi11 j1+1Fi21 j2+11 : : : 1 Fil1 jl+1 �Z0 = z5�4z5
]

0 (B1)
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Applying the general formula for pathwise expansion in Lemma 4.1 yields

E4Fi1 k+1 �Z0 = z5=
∑

�i�=k+1

Ci4s05E4Ji4i5 �Z0 = z5=
∑

�i�=k+1

Ci4s05P
4i5

4i5 4z51

E
(

Fi11 j1+1Fi21 j2+11 : : : 1 Fil1 jl+1 �Z0 = z
)

=
∑

�i1�=j1+11 : : : 1�il�=jl+1

( l
∏

r=1

Cir 4s05

)

E

( l
∏

r=1

Jir 4ir5 �Z0 = z

)

=
∑

�i1�=j1+11 : : : 1�il�=jl+1

( l
∏

r=1

Cir 4s05

)

P
4i11i21 : : : 1il5

4i11i21 : : : 1il5
4z50

Substituting the above into (B1) results in (42) immediately. �

Appendix C. Proof of Lemma 4.2.

Proof. Since the calculations of these conditional expectations are quite similar, we only demonstrate how to compute
P

4i11 i25

4411151 4011554z5, and others can be dealt with similarly. Following (43), we deduce that

P
4i11 i25

4411151 4011554z5 2= E

(

J411154i15J401154i25

∣

∣

∣

∣

m
∑

k=1

W4k5= �z

)

= E

[

E
(

J411154i15J401154i25 �W4151W4251 : : : 1W4m5
)

∣

∣

∣

∣

m
∑

k=1

W4k5= �z

]

0

Converting related iterated Stratonovich integrals to iterated Itô integrals (see Kloeden and Platen [37]), we have

J411154i15 2=
∫ i1

0

∫ t1

0
�dW4t25 � dW4t15= I411154i15+

i1
2

≡
1
2
W4i15

21

J401154i25 2=
∫ i2

0

∫ t1

0
�dW4t25 � dt1 = I401154i25≡

∫ i2

0
W4t15dt10

Thus,

P
4i11 i25

4411151 4011554z5=E

[

1
2
W4i15

2E

(

∫ i2

0
W4t15dt1

∣

∣

∣

W4151W4251 : : : 1W4m5

)

∣

∣

∣

∣

m
∑

k=1

W4k5= �z

]

0 (C1)

Applying the construction of the multiply pinned Brownian motion defined in (47) yields

E

(

∫ i2

0
W4t15dt1

∣

∣

∣

W415=w11 : : : 1W4m5=wm

)

=E

(

∫ i2

0
W4t5dt

)

=E
i2−1
∑

k=0

∫ k+1

k

{

wk41 − t + k5+wk+14t − k5+
[

B4t5−B4k5− 4t − k54B4k+ 15−B4k55
]}

dt

=E
i2−1
∑

k=0

(

1
2
wk +

1
2
wk+1 +

∫ k+1

k
B4t5dt −

1
2
B4k5−

1
2
B4k+ 15

)

=

i2−1
∑

k=1

wk +
1
2
wi2

0 (C2)

Then plugging (C2) into (C1), we obtain

P
4i11 i25

4411151 4011554z5 = E

[

1
2
W4i15

2

(i2−1
∑

k=1

W4k5+
1
2
W4i25

)

∣

∣

∣

∣

m
∑

k=1

W4k5= �z

]

=
1
2

i2−1
∑

k=1

i1
√
kM

41125
4k1 i15

4z5+
1
4
i1
√

i2M
41125
4i21 i15

4z51

which completes the proof.

Appendix D. Validity of the Greeks approximation. To emphasize the dependence on the parameter s0, we express
the asymptotic expansion proposed in Theorem 2.1 as

C4ã5=
e−rT �

√
ã ·�4s05

m+ 1

( J
∑

j=0

ìj4z4s051 s05ã
j/2

+O4ã4J+15/25

)

with z4s05=
4m+ 154K − s05

√
ã�4s05�

1

where ìj4z1 s05, j = 011121 : : : , are equal to ìj4z5 given by (14).
As exhibited in the computational examples in §5, we approximate Greeks (price sensitivities) by directly differentiating

the expansion of option price. For example, the J th order approximation to delta ¡C4ã5/¡s0 is calculated as

DeltaJ =
¡

¡s0

[

e−rT �
√
ã�4s05

m+ 1

( J
∑

j=0

ìj4z4s051 s05ã
j/2

)]

=
e−rT �

√
ã

m+ 1

J
∑

j=0

Dj4z4s051 s05ã
j/21 (D1)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

22
2.

29
.9

3.
10

] 
on

 0
9 

A
pr

il 
20

15
, a

t 2
2:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Cai, Li, and Shi: Pricing Discretely Monitored Asian Options in Diffusion Models
Mathematics of Operations Research 39(3), pp. 789–822, © 2014 INFORMS 815

where

Dj4z1 s05 2= � ′4s05ìj4z1 s05+�4s05

(

¡ìj

¡z
4z1 s05z

′4s05+
¡ìj

¡s0
4z1 s05

)

0 (D2)

The J th order approximation to gamma ¡2C4ã5/¡s2
0 is given by

GammaJ =
¡2

¡s2
0

[

e−rT �
√
ã�4s05

m+ 1

( J
∑

j=0

ìj4z4s051 s05ã
j/2

)]

=
e−rT �

√
ã

m+ 1

J
∑

j=0

Gj4z4s051 s05ã
j/21

where

Gj4z1 s05 = � ′′4s05ìj4z1 s05+ 2� ′4s05

(

¡ìj

¡z
4z1 s05z

′4s05+
¡ìj

¡s0
4z1 s05

)

+�4s05

[(

¡2ìj

¡z2
4z1 s05z

′4s05+
¡2ìj

¡s0¡z
4z1 s05

)

4z′4s05+ 15+
¡ìj

¡z
4z1 s05z

′′4s05

]

0 (D3)

We set up the following proposition to clarify the validity of the above approximations.

Proposition D.1. Assume that �4s05 6= 0 and the two functions �4 · 5 and �4 · 5 have bounded derivatives of all orders.
For any J = 011121 : : : , the following asymptotic expansions hold in the sense of classical calculus:

Delta =
¡C4ã5

¡s0
=

e−rT �
√
ã

m+ 1

( J
∑

j=0

Dj4z4s051 s05ã
j/2

+O4ã4J+15/25

)

1 (D4)

and

Gamma =
¡2C4ã5

¡s2
0

=
e−rT �

√
ã

m+ 1

( J
∑

j=0

Gj4z4s051 s05ã
j/2

+O4ã4J+15/25

)

1 (D5)

where Dj4z1 s05 and Gj4z1 s05 are defined in (D2) and (D3), respectively.

Proof. Without loss of generality, we focus on the proof of (D4). Similar to the proof of Theorem 2.1, our argument is
based on the Malliavin calculus for generalized random variables and the related theory of asymptotic expansion established
in Watanabe [64], Yoshida [65], and Kunitomo and Takahashi [42].

To emphasize the dependence on s0, we write Z4�5 in (A1) by Z4�1 s05. From (7), we recall that the price of the Asian
option satisfies

C4ã5=
e−rT

√
ã�4s05�

m+ 1
E64Z4�1 s05− z4s055

+71 with z4s05=
4m+ 154K − s05

√
ã�4s05�

0

Thus, differentiation of the above expression yields that

Delta =
¡C4ã5

¡s0
=

e−rT
√
ã�

m+ 1
� ′4s05E64Z4�1 s05− z4s055

+7+
e−rT

√
ã�

m+ 1
�4s05

¡

¡s0
E4Z4�1 s05− z4s055

+0

In the proof of Theorem 2.1 in Appendix A, we have obtained (A2), i.e.,

E64Z4�1 s05− z4s055
+7=

J
∑

j=0

ìj4z4s055�
j
+O4�J+150

On the other hand, according to Watanabe [64], we have

¡

¡s0

(

E64Z4�1 s05− z4s055
+7
)

=E

[

18Z4�1s05−z4s05≥09
¡

¡s0
Z4�1 s05

]

− z′4s05E618Z4�1s05−z4s05≥0970

In what follows, we will prove that

E618Z4�1s05−z≥097= −

J
∑

j=0

¡ìj

¡z
4z1 s05�

j
+O4�J+151 (D6)

and

E

[

18Z4�1 s05−z≥09
¡

¡s0
Z4�1 s05

]

=

J
∑

j=0

¡ìj

¡s0
4z1 s05�

j
+O4�J+150 (D7)

The uniform nondegeneracy of Z4�1 s05 allows us to apply the Watanabe-Yoshida theory (see Watanabe [64], Yoshida
[65]) to obtain an expansion for E618Z4�1s05−z≥097. Indeed, the following expansion is valid in the sense of D−�, i.e.,

18Z4�1 s05−z≥09 =

J
∑

k=0

ék4z5�
k
+O4�J+150
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Here, the leading term is given by é04z5= 18Z0−z≥09 and the higher order terms are given by

ék4z5=
∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!

¡4l5H4Z05

¡xl
Yi11 j1Yi21 j2 1 : : : 1 Yil1 jl 1 for k ≥ 11

where H4x5 2= 18x−z≥09 is a Heaviside function and the index set Sk is specified in (34). Thus, the theory of Watanabe-
Yoshida guarantees the validity of the following expansion:

E618Z4�1 s05−z≥097=
J
∑

k=0

äk4z5�
k
+O4�J+151

where
ä04z5=Eé04z5=E18Z0−z≥09 = 1 −N4z51

and

äk4z5=Eék4z5=
∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!
E

(

¡4l5H4Z05

¡xl
Yi11 j1Yi21 j2 1 : : : 1 Yil1 jl

)

1 for k ≥ 10

To show (D6), we will verify that äk4z5≡ −¡ìk/¡z4z1 s05. By (14), it is sufficient to show that ék4z5≡ −¡êk4z5/¡z4z1 s05.
Indeed, it is obvious that

é04z5≡ 18Z0−z≥09 ≡ −
¡ê04z5

¡z
4z1 s05≡ −

¡

¡z
4Z0 − z5+0

For higher order terms, based on (33), we deduce that

¡êk4z5

¡z
4z1 s05 =

¡

¡z

(

∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!

¡4l5T 4Z05

¡xl
Yi11j1Yi21j2 1 : : : 1 Yil1jl

)

≡ −
∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!

¡4l5H4Z05

¡xl
Yi11 j1Yi21 j2 1 : : : 1 Yil1 jl = −ék4z50

Here we have used the following algebraic facts for the Heaviside function and the Dirac delta function:

¡

¡z

¡4l5T 4x5

¡xl
=

¡

¡z
18x−z≥09 = −�4x− z5= −

¡4l5H4x5

¡xl
1 for l = 13

¡

¡z

¡4l5T 4x5

¡xl
=

¡

¡z
�4l−254x− z5= −�4l−154x− z5= −

¡4l5H4x5

¡xl
1 for l ≥ 20

Thus, the above arguments lead to the expansion (D6).
Next, we prove (D7). Based on the theory of stochastic flows (see, e.g., Ikeda and Watanabe [32], Kunita [39]), a standard

argument as employed in the proof of Theorem 7.1 in Malliavin and Thalmaier [48] guarantees the following expansion
in D�:

¡

¡s0
Z4�1 s05=

¡

¡s0

m
∑

k=1

Yk4�5=

J
∑

j=0

( m
∑

k=1

¡

¡s0
Yk1 j

)

�j +O4�J+150

Thus, we have that

18Z4�1 s05−z≥09
¡

¡s0
Z4�1 s05 =

( J
∑

i=0

éi4z5�
i
+O4�J+15

)( J
∑

j=0

( m
∑

k=1

¡

¡s0
Yk1 j

)

�j +O4�J+15

)

=

J
∑

k=0

æk4z5�
k
+O4�J+151 (D8)

where the correction term is given by

æk4z5=

k
∑

i=0

ék−i4z5

( m
∑

n=1

¡

¡s0
Yn1i

)

0

According to Watanabe [64, Theorem 2.2], the pathwise expansion (D8) is valid in the sense of D−�. Thus, the theory of
Watanabe-Yoshida guarantees the validity of the following expansion:

E
[

18Z4�1 s05−z≥09
¡

¡s0
Z4�1 s05

]

=

J
∑

k=0

Eæk4z5�
k
+O4�J+150

Thus, to show (D7), we will prove that Eæk4z5= ¡ìj/¡s04z1 s05. It is sufficient to show that

æk4z5≡
¡êk4z5

¡s0
0 (D9)
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Indeed, for k = 01 we notice that

æ04z5=é04z5
m
∑

n=1

¡

¡s0
Yn10 =é04z5

m
∑

n=1

¡

¡s0

Fn11
�4s05�

≡ 18Z0−z≥09é04z5
m
∑

n=1

¡

¡s0

�4s05W4n5

�4s05�
≡ 01

and, on the other hand,
¡ê04z5

¡s0
=

¡

¡s0
4Z0 − z5+ ≡ 00

For higher order terms, we have

æk4z5≡

k
∑

i=1

(

∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk−i

1
l!

¡4l5H4Z05

¡xl
Yi11 j1Yi21j2 1 : : : 1 Yil1 jl

)( m
∑

n=1

¡

¡s0
Yn1 i

)

1

where we have used the fact that ¡Yn10/¡s0 = 0. On the other hand, based on (33), we note that

¡êk4z5

¡s0
=

∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!

¡4l5T 4Z05

¡xl
¡

¡s0
4Yi11 j1Yi21 j2 1 : : : 1 Yil1 jl 51

from where we deduce that the right-hand side of the above equation equals to

∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!

¡4l−15H4Z05

¡xl

l
∑

r=1

¡Yir 1 jr
¡s0

Yi11 j1Yi21 j2 1 : : : 1 Yir−11 jr−1
Yir+11 jr+1

1 : : : 1 Yil1 jl

=
∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!

¡4l−15H4Z05

¡xl
l
¡Yil1 jl
¡s0

Yi11 j1Yi21 j2 1 : : : 1 Yil−11 jl−1

=

k
∑

jl=1

m
∑

il=1

(

∑

4l−11 4i11i21 : : : 1il−151 4j11j21 : : : 1jl−155∈Sk−jl

1
4l− 15!

¡4l−15H4Z05

¡xl
Yi11 j1Yi21 j2 1 : : : 1 Yil−11 jl−1

)

¡Yil1 jl
¡s0

=

k
∑

i=1

(

∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk−i

1
l!

¡4l5H4Z05

¡xl
Yi11j1Yi21j2 1 : : : 1 Yil1 jl

)( m
∑

n=1

¡

¡s0
Yn1i

)

0

Here, we have used the following simple facts:

¡4l5H

¡xl
=

¡4l+15T

¡xl
1 for l = 011121 : : : 1

as well as, for any r1p = 112131 : : : 1 l3

∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!

¡4l−15H4Z05

¡xl
¡Yir 1 jr
¡s0

Yi11 j1Yi21 j2 1 : : : 1 Yir−11jr−1
Yir+11jr+1

1 : : : 1 Yil1 jl

=
∑

4l1 4i11i21 : : : 1il51 4j11j21 : : : 1jl55∈Sk

1
l!

¡4l−15H4Z05

¡xl

¡Yip1 jp

¡s0
Yi11 j1Yi21 j2 1 : : : 1 Yip−11 jp−1

Yip+11 jp+1
1 : : : 1 Yil1 jl 3

owing to the definition of the index set Sk given in (34). Hence, we obtain the expansion (D9).
Finally, we obtain that

Delta =
¡C4ã5

¡s0
=

e−rT �
√
ã

m+ 1
� ′4s05

( J
∑

j=0

ìj4z4s051 s05ã
j/2

+O4ã4J+15/25

)

+
e−rT �

√
ã

m+ 1
�4s05

( J
∑

j=0

[

¡ìj

¡z
4z4s051 s05z

′4s05+
¡ìj

¡s0
4z4s051 s05

]

ãj/2
+O4ã4J+15/25

)

1

which leads to (D4) for validating the approximation for delta.
Similar argument leads to (D5) for validating the approximation for gamma. Thus, owing to the limited space of the

paper, we omit the tedious calculations. �

Appendix E. On the expansions for CEV processes. Option pricing under the CEV process needs to be dealt with
carefully because of its interesting and important properties for different � (see, e.g., Emanuel and MacBeth [20], Davydov
and Linetsky [18], Carr and Linetsky [13], Andersen and Andreasen [2], Lewis [43]). Following the associate editor’s
instruction, we interpret our expansions in the following sense.
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E.1. The case of �> 0. When �> 0, the local volatility function of the CEV process is unbounded at high asset prices.
According to the studies in Emanuel and MacBeth [20] (see also Davydove and Linetsky [18, Appendix B] and Lewis [43,
Chapter 8]), the discounted CEV price is a strict local martingale and indeed a strict super-martingale on the time interval
601 T 7 (see Elworthy et al. [19]), which represents a financial bubble in the terminology of Protter [53] and the references
therein. As a result, no equivalent martingale measures exist (see Sin [57]). To avoid this problem, one can use the following
limited CEV (LCEV hereafter) process proposed by Andersen and Andreasen [2]:

dSU 4t5= rSU 4t5dt + �SU 4t5min8U �1 SU 4t5
�9dW4t51 with SU 405= s01 (E1)

where U > 0 is a large positive number. We can see that whenever the asset price crosses over the upper “switching level”
U , the LCEV process switches to a geometric Brownian motion. In what follows, we will argue that our expansion formula
(13) can be interpreted as an approximation to the Asian option price under the LCEV model (E1) with a large enough U .

To guarantee the validity of Theorem 2.1, we consider the following double-sided LCEV (DLCEV hereafter) model
8SD4t59 with both the upper switching level U > 0 and the lower switching level L> 0,

dSD4t5= rSD4t5dt +�4SD4t55dW4t51 with SD405= s01 (E2)

and its “smoothed” version 8S�4t59,

dS�4t5= rS�4t5dt +��4S�4t55dW4t51 with S�405= s00 (E3)

Here the function �4 · 5 is defined as

�4x5 2= �x
(

18x≥U9U
�
+ 18L<x<U9x

�
+ 18x≤L9L

�
)

(E4)

and the function ��4 · 5 is an infinitely smooth modification of �4 · 5 constructed by smoothening the “corners” in 4L−�1L+

�5 and 4U − �1U + �5 for a small enough positive number �4< min8L1 4U −L5/295,

��4x5 2=































�xU �1 if x >U + �1

�x6f 4x5x� + 41 − f 4x55U �71 if U − �< x ≤U + �1

�x�+11 if L+ �< x ≤U − �1

�x641 − f 4x55x� + f 4x5L�71 if L− �< x ≤ L+ �1

�xL�1 if x ≤ L− �1

where the function f 4 · 5 is defined as

f 4x5 2=
�4�+ �− x5

�4x− �+ �5+�4�+ �− x5
1 (E5)

with �4x5 2= exp4−1/x5 for x > 0 and �4x5 2= 0 for x ≤ 0.
It is straightforward to verify that ��4 · 5 is infinitely smooth with bounded derivatives of all orders. Therefore, the model

(E3) satisfies the condition of Theorem 2.1. We shall show that

E

[(

1
m+ 1

m
∑

j=0

S�4jã5−K

)+]

−E

[(

1
m+ 1

m
∑

j=0

SU 4jã5−K

)+]

→ 01 as L→ 0 and U → +�0 (E6)

Then for any initial price s0, our expansion formula (13), which provides an expansion for the Asian option price under the
model (E3) with a small enough L and a large enough U , can be interpreted as an approximation to the Asian option price
under the LCEV model (E1) with a large enough U .

To prove (E6), we first use a similar argument as in the proof of Theorem 4 in Andersen and Andreasen [2] to show

E

[(

1
m+ 1

m
∑

j=0

SD4jã5−K

)+]

−E

[(

1
m+ 1

m
∑

j=0

SU 4jã5−K

)+]

→ 01 as L→ 0 and U → +�0 (E7)

Applying Jensen’s inequality twice yields (the function x+ is convex)

E

[(

1
m+ 1

m
∑

j=0

SD4jã5−K

)+]

−E

[(

1
m+ 1

m
∑

j=0

SU 4jã5−K

)+]

≤E

[(

1
m+ 1

m
∑

j=0

4SD4jã5− SU 4jã55

)+]

≤
1

m+ 1

m
∑

j=0

E64SD4jã5− SU 4jã55
+70

Therefore, it suffices to show that for any j = 11 : : : 1m,

E
[

4SD4jã5− SU 4jã55
+
]

→ 01 as L→ 0 and U → +�0
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Denote by 8F4t59 the filtration generated by the Brownian motion 8W4t59, and define the stopping time

�L 2= inf8t ≥ 03 SD4t5≤ L9≡ inf8t ≥ 03 SU 4t5≤ L90

Note that for any j = 11 : : : 1m,

E
[

4SD4jã5− SU 4jã55
+
]

=E
[

4SD4jã5− SU 4jã55
+18�L<jã9

]

≤E
[

SD4jã518�L<jã9

]

0

By the iterated conditioning and the optional sampling theorem, we obtain that for any j = 11 : : : 1m,

E
[

4SD4jã5− SU 4jã55
+
]

≤ E
[

E
[

SD4jã518�L<jã9 �F4min8�L1 jã95
]]

= erjãE
[

18�L<jã9e
−r min8�L1jã9SD4min8�L1 jã95

]

≤ erjãL→ 01 as L→ 0 and U → +�1

which concludes the proof of (E7).
On the other hand, it can be shown that

E

[(

1
m+ 1

m
∑

j=0

S�4jã5−K

)+]

−E

[(

1
m+ 1

m
∑

j=0

SD4jã5−K

)+]

→ 01 as L→ 0 and U → +�1

Indeed, if we define the stopping time

�U1L = inf
{

t ≥ 03 SD4t5≥U − � or SD4t5≤ L+ �
}

≡ inf
{

t ≥ 03 S�4t5≥U − � or S�4t5≤ L+ �
}

1

then it follows from the put-call parity that
∣

∣

∣

∣

E

[(

1
m+ 1

m
∑

j=0

S�4jã5−K

)+]

−E

[(

1
m+ 1

m
∑

j=0

SD4jã5−K

)+]
∣

∣

∣

∣

=

∣

∣

∣

∣

E

{[(

K −
1

m+ 1

m
∑

j=0

S�4jã5

)+

−

(

K −
1

m+ 1

m
∑

j=0

SD4jã5

)+]

18�U1L<T 9

}

∣

∣

∣

∣

≤ 2KP4�U1L <T 5→ 01 as L→ 0 and U → +�1 (E8)

where the last inequality follows from the nonexplosiveness at infinity and the nonattainability at zero of the CEV process
when �> 0 (note that as L→ 0, �→ 0 because �< L). Then, combining (E7) with (E8) yields (E6) immediately.

E.2. The case of �< 0. When �< 0, zero is either an exit boundary (for � ∈ 6−1/2105), or is a regular boundary (for
�<−1/2) and is then specified as a killing boundary by adjoining a killing boundary condition (see Borodin and Salminen
[9], Karlin and Taylor [36], Davydov and Linetsky [18]). Therefore, in either case the CEV process is stopped once it hits
zero (the transition density is norm defective; see Lewis [43, Chapter 8]). Such a feature is employed to model bankruptcy;
see, e.g., Carr and Linetsky [13].

To deal with this case, one can use the following LCEV process with a lower switching level L > 0 (see Andersen and
Andreasen [2]):

dSL4t5= rSL4t5dt + �̂4SL4t55dW4t51 with SL405= s01 (E9)

where the function �̂4 · 5 is defined as
�̂4x5 2= �x

(

18x>L9x
�
+ 18x≤L9L

�
)

0

In what follows, we shall argue that our expansion formula (13) can be interpreted as an approximation to the Asian option
price under the LCEV model with a small enough L.

Similarly to the case of �> 0, we consider the following “smoothed” version of the LCEV model (E9) to guarantee the
validity of Theorem 2.1:

dŜ�4t5= rŜ�4t5 dt + �̂�4Ŝ�4t55 dW4t51 with Ŝ�405= s01 (E10)

where the function �̂�4 · 5 is an infinitely smooth modification of �̂4 · 5. By smoothening the corners in 4L− �1L+ �5 for a
small enough positive number �4< L5, we can construct the function �̂�4 · 5 as follows

�̂�4x5=











�x�+11 if x > L+ �1

�x641 − f 4x55x� + f 4x5L�71 if L− �< x ≤ L+ �1

�xL�1 if x ≤ L− �1

where the function f 4 · 5 is defined in (E5). It is straightforward to verify that �̂�4 · 5 is infinitely smooth with bounded
derivatives of all orders. Therefore, the model (E10) satisfies the condition of Theorem 2.1.
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Similarly to the argument as in the proof of Theorem 4 in Andersen and Andreasen [2], we can show

E

[(

1
m+ 1

m
∑

j=0

Ŝ�4jã5−K

)+]

−E

[(

1
m+ 1

m
∑

j=0

SL4jã5−K

)+]

→ 01 as L→ 00 (E11)

Accordingly, for any initial price s0, our expansion formula (13), which provides an expansion for the Asian option price
under the model (E10) with a small enough L, can be interpreted as an approximation to the Asian option price under the
LCEV model (E9) with a small enough L.

To prove (E11), we shall first show by induction that for any n ∈ �, hj ∈ �+, j = 11 : : : 1 n, and 0 < T1 <
T2 < · · ·<Tn,

P
(

Ŝ�4Tj5≤ hj 1 j = 11 : : : 1 n
)

→ P
(

S4Tj5≤ hj 1 j = 11 : : : 1 n
)

1 as L→ 0, (E12)

where 8S4t59 is the CEV process with the killing boundary zero. When n = 1, (E12) has been proved in Andersen and
Andreasen [2, Theorem 4]. Assume (E12) holds for n= k. Then when n= k+ 1,

∣

∣P4Ŝ�4Tj5≤ hj 1 j = 11 : : : 1 k+ 15−P4S4Tj5≤ hj 1 j = 11 : : : 1 k+ 15
∣

∣

=
∣

∣P4Ŝ�4Tj5≤ hj 1 j = 11 : : : 1 k5−P4Ŝ�4Tj5≤ hj 1 j = 11 : : : 1 k1 Ŝ�4Tk+15 > hk+15

−P4S4Tj5≤ hj 1 j = 11 : : : 1 k5+P4S4Tj5≤ hj 1 j = 11 : : : 1 k1 S4Tk+15 > hk+15
∣

∣

≤
∣

∣P4Ŝ�4Tj5≤ hj 1 j = 11 : : : 1 k5−P4S4Tj5≤ hj 1 j = 11 : : : 1 k5
∣

∣

+
∣

∣P4Ŝ�4Tj5≤ hj 1 j = 11 : : : 1 k1 Ŝ�4Tk+15 > hk+15−P4S4Tj5≤ hj 1 j = 11 : : : 1 k1 S4Tk+15 > hk+15
∣

∣0 (E13)

The first term of the RHS of (E13) goes to 0 as L→ 0 by the induction hypothesis. As for the second term, we define

�̂L 2= inf8t ≥ 03 Ŝ�4t5≤ L+ �9≡ inf8t ≥ 03 S4t5≤ L+ �90

Then we have
∣

∣P4Ŝ�4Tj5≤ hj 1 j = 11 : : : 1 k1 Ŝ�4Tk+15 > hk+15−P4S4Tj5≤ hj 1 j = 11 : : : 1 k1 S4Tk+15 > hk+15
∣

∣

=
∣

∣P4Ŝ�4Tj5≤ hj 1 j = 11 : : : 1 k1 Ŝ�4Tk+15 > hk+11 �̂L <Tk+15

−P4S4Tj5≤ hj 1 j = 11 : : : 1 k1 S4Tk+15 > hk+11 �̂L <Tk+15
∣

∣

≤ P4Ŝ�4Tk+15 > hk+11 �̂L <Tk+15+P4S4Tk+15 > hk+11 �̂L <Tk+15

→ 01 as L→ 01

where the limit holds thanks to (A.4) and (A.5) of the proof for Theorem 4 in Andersen and Andreasen [2]. Therefore,
(E12) holds for n= k+ 1, and hence the proof of (E12) is completed. In particular, this implies that 4Ŝ�4ã51 : : : 1 Ŝ�4mã55
converges weakly to 4S4ã51 : : : 1 S4mã55 as L→ 0. Note that �4y11 : : : 1 ym5 2= 4K−4s0 +

∑m
j=1 yj5/4m+155+ is a bounded,

continuous function. Then it follows that
∣

∣

∣

∣

E

[(

1
m+ 1

m
∑

j=0

Ŝ�4jã5−K

)+]

−E

[(

1
m+ 1

m
∑

j=0

S4jã5−K

)+]
∣

∣

∣

∣

=

∣

∣

∣

∣

E

[(

K −
1

m+ 1

m
∑

j=0

Ŝ�4jã5

)+]

−E

[(

K −
1

m+ 1

m
∑

j=0

S4jã5

)+]
∣

∣

∣

∣

→ 01 as L→ 01 (E14)

where the first equality holds due to the put-call parity.
Similarly, we can show that

∣

∣

∣

∣

E

[(

1
m+ 1

m
∑

j=0

SL4jã5−K

)+]

−E

[(

1
m+ 1

m
∑

j=0

S4jã5−K

)+]
∣

∣

∣

∣

→ 01 as L→ 00 (E15)

Then (E11) follows immediately from (E14) and (E15).
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