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Motivated by analytical valuation of timer options (an important innovation in
realized variance-based derivatives), we explore their novel mathematical connection
with stochastic volatility and Bessel processes (with constant drift). Under the Heston
(1993) stochastic volatility model, we formulate the problem through a first-passage
time problem on realized variance, and generalize the standard risk-neutral valuation
theory for fixed maturity options to a case involving random maturity. By time change
and the general theory of Markov diffusions, we characterize the joint distribution of
the first-passage time of the realized variance and the corresponding variance using
Bessel processes with drift. Thus, explicit formulas for a useful joint density related to
Bessel processes are derived via Laplace transform inversion. Based on these theoretical
findings, we obtain a Black-Scholes—Merton-type formula for pricing timer options,
and thus extend the analytical tractability of the Heston model. Several issues regarding
the numerical implementation are briefly discussed.

KEY WORDSs: timer options, volatility derivatives, realized variance, stochastic volatility models,
Bessel processes.

1. INTRODUCTION

Over the past decades, volatility has become one of the central issues in financial mod-
eling. Both the historic volatility derived from time series of past market prices and the
implied volatility derived from the market price of a traded derivative (in particular,
an option) play important roles in derivatives valuation. In addition to index or stock
options, a variety of volatility (or variance) derivatives, such as variance swaps, volatility
swaps, and options on VIX (the Chicago board of exchange volatility index), are now
actively traded in the financial security markets.

As a financial innovation, Société Générale Corporate and Investment Banking (SG
CIB) launched a new type of option (see Sawyer 2007; Fontenay 2007; or Hawkins and
Krol 2008), called “timer option,”for managing volatility risk. As reported in Sawyer
(2007), “the price of a vanilla call option is determined by the level of implied volatility
quoted in the market, as well as maturity and strike price. But the level of implied
volatility is often higher than realized volatility, reflecting the uncertainty of future market
direction. In simple terms, buyers of vanilla calls often overpay for their options. In fact,
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having analyzed all stocks in the Euro Stoxx 50 index since 2000, SG CIB calculates that
80% of 3-month calls that have matured in-the-money were overpriced.” To ensure that
investors pay for the realized variance instead of the implied one, a timer call (put) option
entitles the investor to the right to purchase (sell) the underlying asset at a prespecified
strike price at the first time when a prespecified variance budget is consumed. Instead
of fixing the maturity and letting the volatility float, timer options do the reverse by
fixing the variance budget and randomizing the maturity. Thus, a timer option can be
viewed as a call option with random maturity, where the maturity occurs at the first time
a prescribed variance budget is exhausted.

Several features of timer options can be seen as follows. First, according to Société
Générale, a timer call option is empirically cheaper than a traditional European call
option with the same expected investment horizon, when the realized volatility is less than
the implied volatility. Second, with timer options, systematic market timing is optimized
for the following reason. If the volatility increases, the timer call option terminates earlier.
However, if the volatility decreases, the timer call option simply takes more time to reach
its maturity. Third, financial institutions can use timer options to overcome the difficulty
of pricing the call and put options whose implied volatility is difficult to quote. This
situation usually happens in the markets where the implied volatility data does not exist
or is limited. Fourth, in consideration of applications to portfolio insurance, portfolio
managers can use timer put options on an index (or a well-diversified portfolio) to limit
their downside risk. They might be interested in hedging specifically against sudden
market drops such as the crashes in 1987 and 2008. Fifth, from the perspective of the
financial institutions who offer timer options, if there is a market collapse, the sudden
high volatility will cause the timer put options to be exercised rapidly, thus protecting
and hedging the fund’s value. By contrast, European put options do not have this feature.
With a timer put option, some uncertainty about the portfolio’s outcome is represented
by uncertainty about the variable time horizon (see Bick 1995 for a similar discussion).

Stochastic volatility models have widely been employed in option valuation, see, e.g.,
surveys in Broadie and Detemple (2004) and Fouque, Papanicolaou, and Sircar (2000).
In particular, applications in pricing volatility derivatives can be found in, e.g., Detemple
and Osakwe (2000), Broadie and Jain (2008), and Kallsen, Muhle-Karbe, and Vo3 (2011)
among others. The motivation of this paper lies in the modeling and valuation for
timer options under the celebrated Heston stochastic volatility model (see Heston 1993),
which is popular among others for its analytical tractability. To generalize the risk-
neutral valuation for options with fixed maturities to random maturities, we begin by
formulating the timer option valuation problem as a first-passage time problem. Based
on such a representation, a conditional Black—Scholes—Merton-type formula for pricing
timer options follows immediately. To derive explicit formulas for pricing timer options,
we apply stochastic time-change techniques to find that the variance process in the
Heston model, running on first-passage time of the realized variance, is indeed equivalent
in distribution to a Bessel process with constant drift (see Linetsky 2004), which is
known for its application in queuing theory and financial engineering. This naturally
motivates the investigation of analytical formulas for a joint density on Bessel processes
and the integration of its reciprocal via Laplace transform inversion. Finally, explicit
Black—Scholes—Merton-type formulas for pricing timer options are established as novel
generalizations of Black and Scholes (1973), Merton (1973), and Heston (1993). The
challenge of practical implementation for the analytical formula, as demonstrated in this
paper, can be circumvented by an application of the algorithm proposed by Abate and
Whitt (1992) for efficient computation of Laplace transform inversion via Fourier series
expansion.
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In the Heston (1993) stochastic volatility model, a Feller square root diffusion (see
Feller 1951; also known for its application in modeling spot interest rates, see Cox,
Ingersoll, and Ross 1985) is employed for modeling the stochastic variance process. As
one of the most popular and widely used stochastic volatility models, the variance process
{V;} is assumed to follow the stochastic differential equation:

AV, = k(0 — V))dt + o,/ V,dW,,

where { W} is a standard Brownian motion. The Feller diffusion (see Feller 1951), also
called “square root diffusion,” is widely used in financial modeling due to its favorable
properties. The Heston (1993) stochastic volatility model has received much attention
from both academia and industry due to its analytical tractability. The popularity started
from its explicit formulas for pricing European options via the inversion of closed-form
characteristic functions proposed in Heston (1993). We also note that exact simulation
strategies based on the explicit distributions of the Heston model have been proposed, see,
e.g., Broadie and Kaya (2006) and Glasserman and Kim (2011). However, the distribution
of first-passage time of realized variance, as advocated for converting variance uncertainty
to time randomness in Geman and Yor (1993), has not yet drawn enough attention.
Mathematically speaking, the first-passage time for realized variance can be defined
through the first time for the total realized variance to achieve a certain level, i.e.,

(1.1) T ::inf{uzo; / de:b},
0

for any b > 0. It is obvious that such a random time runs fast if the volatility is high and
runs slow if the volatility is low. For the Hull and White (1987) stochastic volatility model,
Geman and Yor (1993) established an explicit formula for the distribution related to t
using some remarkable analytical properties of Bessel processes. In this paper, motivated
by the pricing of timer options, we connect the distribution of (z, V;,) to Bessel processes
via stochastic time change and the general theory of Markov processes; see Revuz and
Yor (1999).

The organization of the rest of this paper is as follows. In Section 2 we introduce the
model and some basic setup. In Section 3 we formulate the timer option valuation problem
as a first-passage time problem. In Section 4 we investigate the connection between the
Feller square root diffusion and Bessel process with constant drift and derive a joint
density of Bessel processes needed for characterizing the distribution of our interest. In
Section 5 Black—Scholes—Merton-type formulas for pricing timer options are proposed
and analyzed in comparison to existing literature on business time hedging and quadratic-
variation-based strategies. In Section 6, an efficient algorithm for implementing the
formulas is proposed and demonstrated through numerical examples. Section 7 concludes
this paper and points out some limitations and further research opportunities. All proofs
are collected in Appendices A, B, and C.

2. BASIC SETUP AND THE MODEL

For an investment horizon T large enough, let us define At = T/n as the time increment
and suppose that the asset price is observed att; = iAtfori =0, 1,2, ..., n. For example,
according to the daily sampling convention, At is usually chosen as 1/252 corresponding
to the standard 252 trading days in a year. Let {S;} denote the price process of the
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underlying stock (or index). The annualized realized variance for the period [0, 71 is
defined as

= 1 E S\’
2. 1 li41
or (n_l)At;(og s, ) ’
see, e.g., Broadie and Jain (2008). The (cumulative) realized variance over time period
[0, T is accordingly defined as

. n—1 S 2
Q2.1 RV =T 0}~ (log ") ,
i=0 S,

which records the total variation of the asset return. Upon purchasing a timer call
option, an investor specifies a variance budget calculated from B = UOZTO, where 7) is
an expected investment horizon and oy is the forecasted realized volatility during the
expected investment period. Thus, a timer call option pays out max(S;y — K, 0) at the
first time 7 when the realized variance (2.1) exceeds the level B, i.e.,

k 2

. S,
2.2 T:= E log — B - At
(2.2) mm{k, <0gS )2 } t

i=1 fiz1

Similarly, a timer put option with strike K and variance budget B has a payoff
max (K — Sz, 0).

In this paper, we assume that the asset {.5;} and its instantaneous variance {¥;} follow
the Heston stochastic volatility model (see Heston 1993). In a filtered probability space
(2,P, G, {G}), the joint dynamics of {S;} and {V}} are specified as

dS, = uSdt + V.S (pd 2" + /1 - p2d 27),
AV, = e® — V))dt + o,/ V,dZ",

where {(Zfl), Zfz))} is a standard two-dimensional Brownian motion. Here, u represents
the return of the asset; € is the speed of mean reversion of {V}}; ¢ is the long-term
mean-reversion level of {V;}; o, is a parameter reflecting the volatility of {}}}; o is the
correlation between the asset return and its variance. Let us also recall that the Heston
stochastic volatility model is equipped with a particular linear functional form of the
market price of volatility risk A(z, V;) = n/ V.

For computational convenience, the valuation of variance (volatility) derivatives usu-
ally calls for continuous approximation of the realized variance (2.1). Through quadratic
variation calculation for {log S(¢)}, it is straightforward to find that, for any 7 > 0,

t/At /At

. S\, 2 [
im, 3 (1oe 5™ ) = fm X e, —togs. ) = [ v

i1

Thus, we define
t
(2.3) I = / Vids
0

as a continuous-time version of the cumulative-realized variance (2.1) over the time
period [0, ¢]. As a special case of the 7, defined in (1.1), we introduce a first-passage time
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2.4) T = inf{u > 0;/ Vids = B} .
0

It is obvious that t is a continuous-time approximation of 7 defined in (2.2). In a
financial market with relatively high trading frequency, e.g., daily, a timer call option can
be regarded as an option paying out max (S; — K, 0) at the random maturity time (2.4).
In the following expositions, we will focus on this continuous-time setting.

3. TIMER OPTION VALUATION AS A FIRST-PASSAGE TIME PROBLEM

We assume that timer options can be dynamically replicated using the underlying and
auxiliary assets reflecting market price of volatility risk. Without loss of generality, we
employ variance swaps to do such a job. Because the replication needs to be done until
the random maturity t, we replace expired variance swaps with new ones until the total
variance budget is consumed at the time . More precisely, we regard [0, t] as a disjoint
union of hedging periods

i—1 i

D; = ZT_,- AT, ZT,- AT fori=1,2,...,
Jj=0 j=0

where 7j := 0 and 7;, T, ... represent the maturities of the variance swaps employed in
replication. In other words, on each D;, the timer option is replicated by dynamically
rebalancing the portfolio consisting of the underlying asset with price {.5;} and a variance
swap with maturity 7; and price process {G,(i)}.

By generalizing the risk-neutral valuation theory for pricing derivative securities with
fixed maturity to a case with random maturity, a heuristic replication argument allows
us to establish a boundary value problem for pricing timer options, dynamic hedging
strategies, as well as risk-neutral expectation representations for timer option prices in
what follows. The literature of stochastic volatility has witnessed various treatment of
replication and valuation, see, e.g., Cvitani¢, Pham, and Touzi (1999), Frey and Sin
(1999), Frey (2000), Hobson (2004), Biagini, Guasoni, and Pratelli (2000), Hofmann,
Platen, and Schweizer (1992), and Romano and Touzi (1997). However, in this paper, we
assume that the market is completed by trading auxiliary volatility-sensitive derivatives,
e.g., variance swaps, which are priced in a risk-neutral probability measure Q. Under Q,
the Heston model dynamics follows

(3.1a) dS; = rSidt + V. [ pdW!" + V1= p2aw? ]
(3.1b) dV, = k(0 — V))dt + o,/ V,dW'P,

for some «, 6,0, > 0. Here, r is the risk-free rate. We also assume that —1 < p < 1.
Without loss of generality, we assume that a variance swap with large enough maturity
struck at some level can be used as an auxiliary asset for replicating timer options.
According to Broadie and Jain (2008), the price for variance swap G, = G(¢, V;, I,) for
some function G on R3 of the class C'>! satisfies the PDE

0G G
— 4+ k@ —v)— +v
av

9G 1 , 8°G
V—— =
ot av?2

- —0° G7
ax 27 d



BESSEL PROCESSES, STOCHASTIC VOLATILITY, AND TIMER OPTIONS 127

and
. 3G
de™"'G,) = e*’fﬁam/ V,d W',

To replicate a timer option, suppose at time ¢, an investor holds A® shares of the
underlying asset with price S; and AY shares of the aforementioned variance swap with
price G;. The remainder of the portfolio value, IT, — A ,S S — AtGG[, is fully invested in
the risk-free money market account. In order for the portfolio to be self-financing, we
have

dIl, = AYdS, + AYdG, +r(T1, — ATS, — AYG,) dt,
which is equivalent to
d(e'T1,) = e "'[AXdS, — r Sdt) + AL (dG, — rGdt)]

= [0 2 0 TaW' + AT (pd W 4 VT 2w

On the other hand, we assume that the timer (put or call) option struck at K with payoff
function H(s), i.e.,

(3.2a) H(s) = max{K — 5,0} for a timer put option,
(3.2b) H(s) = max{s — K,0} for a timer call option,
has price Pin; = u(t A ;5 Sz, Vine, Iine) for some function u(z; s, v, x) on Ri of the class

C">21 In other words, u(, s, v, x) denotes the price of the timer option at time ¢ with
underlying value s, variance level v, strike K, and variance budget B — x. Thus, we have

ou ou ou 1 9%u 3%u
de"P)=e¢" [a +/<(6—V) +'S’a +V?+23Vﬁ+ S,2 Gryer

d%u | U (1)
+p0,8V,(—— —ruldt +e —oy,/ VidW;
dsov av
du NN )
+§ VzS(Pth + 1_10de> :
Replication yields that

de™" P) =d(e"'T,),

which results in the following PDE boundary value problem

ou (0 ) n ou iy ou +1 2, d%u +1 d%u n 3%u 0
— +«k —v— rs— 4 v— oV— + = SV —ru=0,
a1 as ax 270V T2t T TP asay

(3.3a)

(3.3b) u(t,s,v, B) = H(s),
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for (¢, s, v, x) € [0, +00) x [0, +00) x (0, +00) x (0, B] as well as the following replicat-
ing strategy:

and AG—a—u 09

ou
AS = ¢ = —.
av av

‘T s

In the following proposition, we represent the timer option price as a risk-neutral
expectation of discounted payoff, which further leads to a conditional Black—Scholes—
Merton-type formula. For such a purpose, we define the following functions, which
generalize the corresponding components in the celebrated Black—Scholes—Merton for-
mula (see Black and Scholes 1973 and Merton 1973) for pricing European options. We
let

(3.4a)  dy(v,£): = (v — V) — k& + k B) %sz,
oy

1
(34b)  di(v.§):= +ré+ 5B~ p?) + do(v, &)} ,

1 S
JA =B [log <K>

(3.4c)  dr(v.§):= + 1§ — %B(l — )+ do(v, E)] :

1 S
V(I —=p?)B [log (K)

where, indeed, the following relation holds

dr(v,§) =di(v,§) —/(1 — p?)B.

Also, denote by

N(x) = ’§du

1 X
A/ 2T —00
the standard normal cumulative distribution function.

PROPOSITION 3.1. The price of a timer put or call option with variance budget B and
payoff function H(s) defined in (3.2a) or (3.2b) admits the following Feynman—Kac-type
representation for its arbitrage-free price at time t A T,

(3.5 u(tAt,s, v, x)=EUe " TTNIH(S) | S =5, Vine = v, Lnp = ¥,

which is indeed independent of t A T in the sense that

(3.6) u(t AT, 8,v,X) = E@[e”'TB*‘H(SZB,V‘.) | S =s, V=],

where tp_ and t are defined in (1.1) and (2.4), respectively. Equivalently, the initial

arbitrage-free price of the timer put option satisfies the following risk-neutral representation
and conditional Black—Scholes—Merton-type formula

(3.7a) Py = E9e™"" max(K — S., 0)]

(3.7b) = EYKe ™" N(=da(V;, 7)) = Si(1 = eI N(di (V, ))];
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similar expressions follow for the time call option, i.e.,

(3.83)  Cy=EYe " max(S, — K, 0)]
(3.8b) = EU[Se® " DN\ (V;, 1)) — Ke™ " N(do(V7, 0)].

Proof. See Appendix A. O

REMARK 3.2. Based on (3.5), it follows that du/d¢ = 0 for the PDE boundary value
problem (3.3a) and (3.3b). Denote by w(s, v, x) = u(t, s, v, x). Thus, we characterize the
arbitrage-free timer option prices using the following Dirichlet problems of degenerated
elliptic PDEs with boundary condition on a plane {(&;, &, B), & € R, & € R}:

2 2, 2
gv; ;a‘,zvaavv; %s7 aa 5 —|—,0<71sv(;9 ;}v + k(0 —v)g—v:—i—rs%—v: —rw =0,
w(s, v, B) = H(s).

Indeed, this characterization reconciles the fact that timer option prices are independent
of the initial time, but solely depend on the initial asset price, the variance level, and the
variance budget. We also note that the remaining variance budget x can be regarded as
a temporal variable corresponding to the stochastic variance clock (2.3).

An immediate mathematical reconcilement with the Black—Scholes—Merton formu-
las resides in the case of p =0, 0, =0, x = 0, under which {sz)} is the only driving
Brownian motion. In this case, the variance V; = V} is a constant and

dS, = r S,dt + Vo S,dw'?.
For a variance budget B = I, T, it is obvious that t = T. Thus,
1
Sr = ST: &)CXp {I’T— 2B+\/§Z} .

It is obvious that dy(v, &) defined in (3.4a) equals zero; d,(v, &) and d»(v, &) defined in
(3.4b) and (3.4c¢), respectively, reduce to the Black—Scholes—Merton case, i.¢.,

w0 gialin(3) 0+ 9)1]
w0 gtalin(3) (- 10)1]

The price of the timer call option with variance budget B = 14T coincides with the
Black—Scholes—Merton price of a call option with maturity 7 and strike K. That is,
Co = SN(d)) — Ke " T N(dy).

4. BESSEL PROCESSES, STOCHASTIC VOLATILITY, AND FIRST-PASSAGE
TIME FOR REALIZED VARIANCE

Motivated by the valuation of timer options, we present a characterization of the joint
distribution of the first-passage time t defined in (2.4) and the variance V; via a Bessel
process with constant drift. Also, a related joint distribution on Bessel processes is
investigated.
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First, we introduce some notations and briefly recall some fundamental facts about
Bessel processes and Bessel processes with constant drift. According to Linetsky (2004), a
Bessel process with drift u and index v > —%, or equivalently, dimension § = 2(v + 1) >
1, has a state space E = [0, 00), a scale function s(x) = x>’ ¢~2**, and a speed measure
m(dx) = 2x*+1e?~dx. Its infinitesimal generator is given by

1 1\ 1
@ afw =37+ ((v43) 1 4u) £
X
with the corresponding domain
d +
42) D, = {f|f, APy € Gollo, +ooy, @ o} ,

where the reflecting boundary condition is defined by

df* ) _ lim L =SO _

4.3) ds  obs s(x) —s(0)

For i = 0, the case reduces to a standard Bessel process, see Revuz and Yor (1999) for
detailed discussions.

Let {R,} be a 8-dimensional Bessel process labeled as BES®. For any § > 2, {R,} is a
diffusion process governed by the SDE:

s§—1

where { W} is a standard Brownian motion. Conventionally, BES® is alternatively denoted
by BES"™), where v = §/2 — 1 is its index. For any u € R, let {R/'} be a §-dimensional
Bessel process with drift p. For any § > 2, { R/} is a diffusion process { R/} governed by
the SDE:

(4.5) dR" = (5 _Ml + u) dt +dW,, R!>0.

2R;
Similar to the Bessel process without drift, let BESfL or BESL”) denote such a process,
where v = §/2 — lisitsindex. For the case of § > 2 (v > 0), the point zero is unattainable
for both { R} are { R''}; however, for the case of 2 > § > 1 (0 > v > —1/2), the point zero
is attainable but instantaneously reflecting for both { R;} are { R/} (see Revuz and Yor
1999 and Linetsky 2004). According to exercise 1.26 in chapter XI from Revuz and Yor
(1999), it is known that (4.4) and (4.5) still hold for 2 > § > 1; however, these equations
are regarded as semimartingale decompositions, which imply the following integrability
properties:

t t
(4.6) / Lds < oo and / Lds < 00.
0 Rs 0 th

In queuing theory, Bessel processes with constant drift have appeared as heavy traffic
limits (see Coffman, Puhalskii, and Reiman 1998); in financial engineering, Bessel pro-
cesses with constant drift relate to some nonaffine analytically tractable specifications for
spot interest rates, credit spreads, and stochastic volatility (see Linetsky 2004). For more
detailed studies on Bessel processes and Bessel processes with drift, readers are referred
to Revuz and Yor (1999), Karatzas and Shreve (1991) as well as Linetsky (2004).
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4.1. A Distributional Identity

Based on (3.7b) and (3.8b), the valuation of timer options calls for the joint distribution
of (V;, 7). It turns out that for the Feller diffusion

4.7) AV, =k(® — V) dt + o,/ V,dw'V
the distribution of (7%, t) can be characterized by using a Bessel process with constant
drift.

PROPOSITION 4.1. Under the risk neutral probability measure Q , we have a distributional
identity for the bivariate random variable (V;, t).

B
48) ., r)D(avXB, / ds )
- 0o oy X

where T and B are defined in (2.4) and {V;} is defined in (3.1b). Here {X;} is a Bessel
process withindexv = k0 /o? — 1/2 (dimension = 2«0 /o2 + 1) and constant drift —k /o,
satisfying the stochastic differential equation:

K6 K

(49) de = (2 — )dl“f—dlgt, X(): I/O/O‘V,
or X, o,

where {B,} is a standard one-dimensional Brownian motion.
Proof. See Appendix B. O

This proposition can be regarded as parallel to a characterization investigated in
Geman and Yor (1993) for the Hull and White (1987) stochastic volatility model. Indeed,
when the Feller condition 2«6 — o2 > 0 holds, the dimension (resp. the index) of Bessel
process with drift (4.9) satisfies v = k6 /a> — 1/2 > 0 (resp. § = 2k6/02 + 1 > 2). Thus,
zero is an unattainable point for both the variance process { ¥;} and the Bessel process { X;}
as introduced in (3.1b) and (4.9), respectively, according to the Feller test for classifying
boundary points (see Section 5.5 in Karatzas and Shreve 1991). Thus, in the case of
2k0 — o2 > 0, the identity (4.8) follows from a stochastic time-change argument. When
the Feller condition is violated, i.e., 2k6 — af < 0, zero is attainable and instantaneously
reflecting. The distributional identity (4.8) follows from the general theory of Markov
diffusion processes and machineries from real analysis.

4.2. A Joint Density on Bessel Process

For the Bessel process { R} with index v > 0, the joint distribution of (R, fot %du)
and its applications in applied probability and stochastic modeling are well studied in,
e.g., Geman and Yor (1993), Revuz and Yor (1999), and Yor (2001). However, the law of
(R, fol idu) and its applications received much less attention. For any arbitrary s > 0,
let

(4.10) p(x, t;8)dxdt .= P (RS € dx, / % € dt) .
0

To further apply the joint distribution in (4.8) for the analytical valuation of timer options,
we find an explicit expression for p(x, ¢;s) in what follows.
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Now, we derive an expression for (4.10) by employing Laplace transform inversion on
a joint density on Bessel processes involving exponential stopping given in Borodin and
Salminen (2002). According to Borodin and Salminen (2002), the joint distribution on
Bessel process and the integration functional of its reciprocal stopped at an independent
exponential time admits the following closed-form representation; i.e., for the Bessel
process R with index v starting at Ry > 0 and an independent exponential time 7 with
intensity A > 0, we have that

T
“.11) P (RT c dx,/o %“ c dt) — g(x, 1;2) dxdt,
where
i) PR (Ry + x)v/2% cosh (t\/g) , 2V Rox
q(x, ;1) = - ), | = tox

Rj sinh (1\/5) o sinh (t\/g) | sinh (t %)

with 1,(-) representing a modified Bessel function for the first kind defined by

+00
1 Z\ vtk
(4.12) @) = /2:0: KD +k+ 1) (5) :

We note that the exponential stopping (4.11) is equivalent to a Laplace transform of
p(x, t;5) on the time variable s, i.e.,

q(x, ;1)

+o00
4.13) HQR) = / e M p(x, t;5)ds = S
0

holding for all positive real values: A > 0. To obtain p(x, ¢;s) through Laplace transform
inversion, we perform analytical continuation in order to extend the domain of the
Laplace transform H()) to the following complex region of convergence (see, e.g., chapter
3 in Doetsch 1974):

(4.14) D = {1 € C, Re(x) > 0}.

In what follows, we articulate the analytical continuation of ¢(x, 7; A)/A, i.e., we consider
how this function is defined for A = y + iy with y > 0 and i = /—1. First, we note that
there is no problem to define v/A = /3 + 7y as a single valued analytic function because
y + iy lies in the principal branch (-, ] as y increases from —oo to co. Denoted by

(4.15) Ay) = 2—V2(}/+W)R0x

sinh (t,/ y+21}>

In Figure 4.1, we observe the winding of A(y) through the winding of a scaled argument

loglog | A(y)|

y(y) = A(y) TAO)]
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Logarithmically Scaled Bessel Argument

FIGURE 4.1. Winding of the Bessel argument A(y).

We also note that brute force extension of the modified Bessel function (4.12) results in a
multivalued function when the index v is not an integer.! Thus, to ensure the analyticity of
L,(A(y)) on the region ©, we employ the following well-known analytical continuation,
i.e., see page 376 in Abramowitz and Stegun (1984), for any m € N,

(4.16) I,(ze™™) = ™ I (2).

Thus, to preserve analyticity, the value of the function ¢(x, #; A)/A on a branch different
from the principal one (—, 7] needs to be defined by multiplying the value on the
principal branch by a factor ¢,

It is obvious that the Laplace transform is absolutely convergent in the region (4.14)
in the sense that

+00
/ le™ p(x, t;5)|ds < 0o, forire®.
0

Note that Laplace transform is analytic in the region of absolute convergence, see, e.g.,
chapter 6 in Doetsch (1974). Therefore, the uniqueness of analytical continuation (see,
e.g., chapter 8 in Ahlfors 1979) guarantees that (4.13) holds for any A € ® with the
function H(A) defined on ® through the aforementioned analytical continuation pro-
cedure. Similar argument for analytical continuation of Laplace transform applied to
mathematical finance can be found in appendix D of Davydov and Linetsky (2001b).
Thus, according to section 2.4 in Doetsch (1974) (see, e.g., theorems 24.3 and 24.4),
the joint density (4.10) can be obtained from a Bromwich integral for inverting Laplace
transform, of which the literature has seen various applications, see, e.g., Davydov and
Linetsky (2001a), Davydov and Linetsky (2001b), Petrella (2004), Fusai (2004), Kou,
Petrella, and Wang (2005), Cai, Chen, and Wan (2009, 2010), and Cai and Kou (2011,
2012).

IThis is because the complex power function is multivalued. Indeed, the power function
2% = |z|%@gE+2nm)e for any integer n, has different values when « is not an integer.
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PROPOSITION 4.2. The joint density (4.10) admits the following analytical representation
through Laplace transform inversion: for any damping factor y > 0, we have

Z—=>00 LTT1

1z

1 y+iz
4.17) p(x, t; B) = lim 3 / eP*HO) dx,
o

where the function H(L) is defined in (4.13) and the above procedure of analytical
continuation.

Before closing this section, we bring out the joint law of a standard Bessel process
satisfying the stochastic differential equation (4.4) and its driving Brownian motion as a
by-product of the previous results.

COROLLARY 4.3. The joint density of R, and W, in (4.4) has the following representation

P(R,edx,W,ed1v)=2v+1p<x, Ax—w—R)

3 il , t) dxdw.

5. BLACK-SCHOLES-MERTON-TYPE FORMULAS
FOR TIMER OPTION VALUATION

In this section, we apply the results established in the previous sections to derive Black—
Scholes—Merton-type formulas for pricing timer options. Such formulas can be regarded
as generalizations of the celebrated Black—Scholes—Merton formula (see Black and
Scholes 1973 and Merton 1973) as well as the semi-closed-form formula under the
Heston stochastic volatility model (see Heston 1993) for pricing European options. Un-
der an assumption that the interest rate is zero, our formulas can be simplified to the
Black—Scholes—Merton formula with appropriate parameters, based on which we point
out some connections with existing literatures and untangle a puzzle on the comparison
between timer options and European options.

Now, using dy(v, &), di(v, &), and d>(v, §) defined in (3.4a), (3.4b), and (3.4c), the joint
density p(x, t) explicitly obtained in Proposition 4.2, and an auxiliary function defined
by

K20 K2

o? § 2072

(v, &) = %(VO —v)+ B,

;
we obtain the following proposition.

PROPOSITION 5.1. Under the Heston (1993) stochastic volatility model (3.1a) and
(3.1b), for strike K and variance budget B, the initial price of a timer call option is given

by
(5.1 G == ST — KI5
the initial price of a timer put option is given by

(5.2) Py = KIY — ¥
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Here, fori =1, 2,

(5.3) Iy = / / Q <0Vx, ) p(x, t; B) dxdt,
0 0 gy
o0 o0 t
n’ :/ / Qr <<7Vx, ) p(x, t; B)dxdt,
0 0 Oy
where

Qi(v.§) = N(di(v, §)) expldy(v. §) + c(v. §)},

Q(v. &) = N(dx(v, §))exp{—r& + c(v. )},

QU(v,8) = (1 — N(di(v, ) expldo(v, £)}) exp {c(v, §)} ,
(v, &) = N(=do(v, £)) exp{—r& + c(v, £)},

and p(x, t; B), as given in (4.17 ), is the transition density of a standard Bessel process with
index v = k0 /0 — 1/2 and initial value Ry = V;/o,.

Proof. See Appendix C. U

An idea similar to timer options can be traced back to Bick (1995), which proposed
a quadratic variation based and model-free portfolio insurance strategy to synthesize a
put-like protection with payoff max{K'e’* — S;, 0} for some K’ > 0. Though the timer
option payoff max{K’' — S, 0}, for some K’ > 0, considered in this paper is different
from the put-like protection, timer put options may serve as effective tools for portfolio
insurance. With a timer put option written on an index (a well-diversified portfolio),
the uncertainty about the index’s volatility is replaced by the variability in time horizon.
Dupire (2005) applied a similar idea to the “business time delta hedging” of volatility
derivatives under the assumption that the interest rate is zero. Working under a general
semimartingale framework, Carr and Lee (2010) investigated the hedging of options on
realized variance. As an example, Carr and Lee (2010) provided a model-free strategy
for replicating a class of claims on asset price when realized variance reaches a barrier.
Using the method proposed in Carr and Lee (2010), one is able to price and replicate a
payoff in the form: e.g., max(S; — Ke'*, 0). It is worth noting that this payoff coincides
with Société Générale’s timer call option with payoff max(S; — K, 0), when the interest
rate r is assumed to be zero.

When r = 0%, a much simpler version of the Black—Scholes—Merton-type formulas
(5.1) and (5.2) for pricing timer options can be directly derived from the risk-neutral
representations (3.7a) and (3.8a). Indeed, we have that

t 1 t
S,=Soexp{f Va5 | Vudu},
0 0

where W3 = p WSI) + 41— p? W(lz). Recall that the variance budget is calculated as B =
002 Ty, where [0, Tp] is the expected investment horizon for some 7p; and oy is the forecasted
annualized realized volatility. Based on the definition of 7 in (2.4), we apply the Dubins—
Dambis—Schwarz theorem (see, e.g., chapter 3, theorem 4.6 in Karatzas and Shreve 1991)
to obtain that

/ JVd W, =W,
0
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for a standard Brownian motion {W/}. This leads to that
1
S, = Sexp W‘};—EB .
Itis easy to obtain the following result for pricing a timer call option under the assumption

r = 0%.

PROPOSITION 5.2. Assuming r = 0%, the price of the timer call option with strike K and
variance budget B = 002 Ty can be expressed by the Black—Scholes—Merton (1973 ) formula:

(5.4) Co = E% [max{S, — K, 0}] = BSM(S, K, Ty, 00, 0),

where BSM (s, K, T, o, r) is the Black—Scholes—Merton formula for pricing European call
options, i.e.,

BSM (s, K, T,o,r) :=sN(d)) — Ke™"T N(d»),

with the functions

e el (7))
oo el (-3)1)

Based on this proposition, we provide a theoretical justification of the following claim
given in Sawyer (2007), i.e., “High implied volatility means call options are often over-
priced. In the timer option, the investor only pays the real cost of the call and does not
suffer from high implied volatility.” More precisely, we verify that the timer call option
with strike K and expected investment horizon 7j and forecasted realized volatility oy
(variance budget B = o Tp) is less expensive than a European call option with strike
K and maturity 75, when the implied volatility oimp(K, 75) associated to strike K and
maturity 7 is higher than the realized volatility 0. Indeed, by (5.4), we deduce that

E® [max{S, — K, 0}] = BSM(S), K, Ty, 00, 0) < BSM(&, K, T, 0imp(K, T5), 0).

Comparing with European put options, timer put options are able to offer relatively
cheaper cost of portfolio insurance and protection. If the realized variance is low, the timer
put options take a long time to mature. Comparing with the regularly rolled European put
options for protecting the downside risk of a portfolio, the timer put options require less
frequency of rolling, resulting in a reduction in the cost for implementing the protection.

The comparison between timer options and European options heuristically motivates
an option strategy for investors to capture the spread between the realized and implied
volatility risk. For example, if an investor strongly believes that the current implied
volatility is higher than the realized volatility over a certain period, she would take
a short position in a European call option with maturity 7y, strike K, and implied
volatility oimp(K, To); and take a long position in a timer call option with the same strike
K and variance budget B = oimp(K, 1)> Ty. By the above analysis, the net value of this
portfolio is zero at time zero. However, the timer call option has a maturity larger than
To. At the time T, a positive profit is realized due to the premia of the timer option.
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6. NUMERICAL IMPLEMENTATION

In this section, we briefly discuss the implementation of the analytical formulas proposed
in theorem 4. An ad hoc Monte Carlo simulation scheme is also proposed in order to pro-
vide numerical benchmarks. Comparing with the Monte Carlo discretization approach,
the analytical formula is bias-free since the numerical errors are entirely from Laplace
transform inversion and numerical integration.

The implementation of the Black—Scholes—Merton-type formulas given in theorem 4
mainly consists of the following steps. To begin, we map the infinite integration domain
to a finite rectangular domain [0, 1] x [0, 1] via a transform according to u = ¢~ and
z = ¢~ '. Then, the two-dimensional integration on [0, 1] x [0, 1] converted from (5.3)
can be implemented via the trapezoidal rule. Thus, the key task is to efficiently evaluate
p(—logu, —logz; B) at each grid point on [0, 1] x [0, 1]. The implementation of the
joint density p(x, t; B) proposed in Proposition 4.2 requires correct valuation of special
functions and numerical inversion of Laplace transforms.

When the inverse Laplace transform in (4.17) is implemented, the analytical continua-
tion discussed in Subsection 4.2 needs to be taken into account. In practice, the winding
of A(y) defined in (4.15) must be captured to ensure the analyticity of the transformed
function H(1) in (4.17). However, most computation packages automatically map the
complex numbers into the principal branch (—m, 7r]. This fact might cause the discon-
tinuity of the Bessel function when its argument A(y) goes across the negative real line.
Therefore, an algorithm needs to be implemented to keep track of the winding number
of the argument A(y) by counting rotations and performing the analytical continuation
via (4.16). This allows us to simply calculate the function on the principal branch and
multiply it by a factor ¢”7'. A similar type of analytical correction can be found in
Broadie and Kaya (2006) for exact simulation for the Heston stochastic volatility model.
Figures 6.1(a) and (b) show the effect of rotation counting on the phase angle of A(y).

Based on the correct valuation of the Laplace transform through analytical continu-
ation as discussed in Subsection 4.2, we obtain the joint density (4.17) via an algorithm
for inverting Laplace transforms. Numerical valuation of Laplace transform inversions
has become popular in option pricing, see, e.g., Davydov and Linetsky (2001a), Petrella
(2004), Fusai (2004) , Kou et al. (2005), Feng and Lin (2011), Cai et al. (2009, 2010), and
Cai and Kou (2011, 2012). In this numerical experiment, we employ a well-known and
widely used algorithm for inverting Laplace transforms from Fourier series expansion

g |l e
2
; 50
= |
(a) Uncorrected Angle (b) Corrected Angle

FIGURE 6.1. Correction for valuation of the Bessel argument A(y).
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proposed by Abate and Whitt (1992). A proper way of discretization and truncation as
well as a suitable choice of damping parameter y are essential for the efficient imple-
mentation. According to Abate and Whitt (1992), the trapezoidal rule works well for
oscillatory integrands, since errors tend to cancel with each other. According to Abate
and Whitt (1995), the damping parameter y is usually chosen as y = A/(2B), where
A= 581log10, in order to have at most 107% discretization error for some integer §. In
practice, Abate and Whitt (1992) suggests that the choice of 4 = 18.4 should produce
stable and accurate results. According to Abate and Whitt (1992), an efficient Euler
algorithm for approximating the inversion can be proposed as follows:

m

e By~ Y ()27 suk(B),

k=0 k

where ed? A eAr2 1k , A+2jmi
surk(B) = o Re (2N S 1y Re (22T L
wat0= SpRe [ 55) |+ 2D fn (7))

for some integers m and n. Detailed analysis of this efficient Laplace transform inversion
algorithm can be found in Abate and Whitt (1992, 1995).

To set up benchmark values for illustrating the accuracy of our implementation based
on the analytical formulas, we propose a Monte Carlo simulation scheme as follows. Note
that alternative simulation strategies for pricing timer options have been investigated in
Bernard and Cui (2011) . Instead of using the discounted payoff e™'* max{S; — K, 0} as
the estimator directly, the expression (3.8b) offers a conditional Monte Carlo simulation
estimator, which leads to the enhancement of efficiency through variance reduction. On
the time grids t; = i At, fori = 1, 2, ..., the bivariate distribution ( V;, t) is approximated
via a “time-checking” algorithm based on an exact simulation of the discretized sample
path of {¥}}. According to Cox et al. (1985), it is known that the transition of the square
root diffusion

AV, =k(® — V))dt + o,/ V,dWw')

follows a noncentral chi-squared distribution. More precisely, V; given V;, for0 < u < ¢,
up to a scale factor, is a noncentral chi-squared distribution, i.e.,

_ o2(l —e<t-wy 4o (1=1) y
dic T\ o2(1 —ertmmy " )

Vi

where the degree of freedom is d = 40k /o? and the noncentrality parameter is A =

% V.. By approximating the total variance fot Vids using a trapezoidal rule, i.e.,

jAL V(iA J-1
/ Vids ~ At [W + 3 Vikan |
0 k=1

we check the first time when the variance budget is exhausted by searching the first j € N
(denoted by jnin) such that

iA j—1
At [W +y V(kAt)} > B.
k=1
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TABLE 6.1
Timer Call Option Price: Analytical Valuation and Monte Carlo Simulation

B =0.01 B =0.04

K=90 K=100 K=110 K=90 K=100 K =110

Analytical values 12.3978 5.1835  1.4619 20.7765 14.0857  8.9501
CPU times (seconds) 58.28 60.31 59.15 59.35 58.96 60.72
Simulated values 12.3994 5.1818  1.4626 20.7693 14.0922 8.9576
Simulated exercise times 0.7130  0.7130  0.7130  3.6287  3.6287  3.6287
Standard errors 0.0059  0.0044 0.0024 0.0118 0.0105  0.0088

CPU times (seconds) 1551.84 1553.83 1550.63 1977.35 1977.44 1977.95

Notes. The parameters are set similar to those employed in Heston (1993) as .§ = 100,
p=-03,175=002k=2,0=0.01, and o, = 0.1, where the Feller condition holds.

TABLE 6.2
Timer Call Option Price: Analytical Valuation and Monte Carlo Simulation

B =0.045 B=0.18

K=90 K=100 K=110 K=90 K=100 K=110

Analytical values 17.1397 11.1517 6.8609  29.7440 24.6997 20.4382
CPU times (seconds) 59.38 57.92 56.59 58.13 58.62 57.33

Simulation values 17.1300 11.1606 6.8545  29.7317 24.6916 20.4203
Simulated exercise times  0.9660 0.9660 0.9660  2.9249 29249  2.9249
Standard errors 0.0118 0.0101 0.0082  0.0128 0.0121 0.0113

CPU times (seconds) 15137.3 15087.7 15079.1 75070.2 71875.2 72936.7

Notes. The parameters are set similar to those employed in Broadie and Kaya (2006)
as § =100, p = —0.3, 15 =0.09, « = 2,6 = 0.09, and o, = 1, where the Feller con-
dition is violated.

Thus, we obtain an approximation (V;, t) & (Vj,, ar» JminAt). Finally, we evaluate the
estimator as
a = ‘S)edO(I/fn'inA”j‘“inAl) N(d](V‘minA[, jminAt)) - Ke_l'jmnAlN(dZ( meAr» jminAt))~

In the numerical experiments, we price timer call options using two sets of model
parameters corresponding to the cases when the Feller condition (2«6 — o> > 0) holds or
not, for which numerical results are reported in Tables 6.1 and 6.2. For each parameter set,
we consider both small and large variance budgets (B = o¢ T) and representative strikes
corresponding to different moneyness (& = 100, K = 90, K = 100, and K = 110). In
Table 6.1, we assume the expected investment horizon as 7y = 0.6 (resp. 7y = 3.5) and
assume the forecasted volatility op = 0.13 (resp. o9 = 0.11). In Table 6.2, we assume the
expected investment horizon as 7) = 0.96 (resp. 7p = 2.9) and assume the forecasted
volatility oy = 0.22 (resp. op = 0.25).

Analytical values are obtained from implementing the analytical formulas proposed
in Proposition 5.1 by plugging in the joint density (4.17). For simulating timer option
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price, we imitate the asymptotically optimal rule proposed in Duffie and Glynn (1995)
for allocating computational resources by specifying k = [/n], where n denotes the total
number of simulation trials and & denotes the expected number of time steps in the
expected investment interval [0, 73]. In numerical experiments, we choose the number of
simulation trials # such that standard errors are at a magnitude of about 1072 or less.

The algorithms are implemented in Mathematica and performed on a laptop PC with
an Intel(R) Pentium(R) M 1.73 GHz processor and 2 GB of RAM running Windows
XP Professional. The computing times for analytical calculation through our pricing
formulas (5.1) and (5.2) are around 1 minute on average, see the CPU times (seconds)
reported under the analytical values. Since the Abate—Whitt algorithm for Laplace trans-
form inversion is notably efficient, most of the computing time is employed by correct
evaluation of the Laplace transform function (4.13) using the aforementioned analytical
continuation algorithm. However, for obtaining simulation results with standard errors
at most 1072 as those listed in Tables 6.1 and 6.2, the elapsed CPU times for simulating
each price range from about a half to several hours. We note that all our analytical values
are contained in the 95% confidence intervals constructed via the simulated values and
£1.96 times of the corresponding standard errors. This demonstrates the accuracy and
efficiency of our analytical implementation.

7. CONCLUDING REMARKS

Motivated by analytical valuation of timer options, we explore their novel mathematical
connection with stochastic volatility and Bessel processes (with constant drift). Under
the Heston (1993) stochastic volatility model, we formulate the problem through a first-
passage time problem on realized variance and generalize the standard risk-neutral
valuation theory for fixed maturity options to a case involving random maturity. By time
change and the general theory of Markov diffusions, we characterize the joint distribution
of the first-passage time for realized variance and the corresponding variance using
Bessel processes with drift. Thus, explicit formulas for a useful joint density related to
Bessel processes are derived via Laplace transform inversion. Based on these theoretical
findings, we obtain a Black—Scholes—Merton-type formula for pricing timer options and
thus extend the analytical tractability of the Heston model. Several issues regarding the
numerical implementation are briefly discussed.

As for further research topics, it will be interesting to investigate the valuation of timer
options under more sophisticated models such as jump-diffusion stochastic volatility
models. Due to the uncertainty in the maturity, it is also interesting to take into account
more risk factors, e.g., the interest rate and dividend. It is also worth exploring more
properties for Bessel process (with drift) and their applications in various fields.

APPENDIX A: PROOF OF PROPOSITION 3.1

Proof. The proof of (3.5) and (3.6), and equivalently, (3.7a) and (3.8a), follows from a
generalization of the standard argument for risk-neutral valuation to a case of random
maturity. For the sake of space, I omit the detailed argument and focus on the derivation
of the conditional Black—Scholes—Merton formulas (3.7b) and (3.8b) instead. Without
loss of generality, we establish (3.7b) as follows.
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We begin by representing the solution to the stochastic differential equations (3.1a)
and (3.1b) as

1 t t t
S,:&)exp{rt—zf de+p/ \/Vdefl)—F\/l—pz/ \/Vdejz)},
0 0 0

t t
V, = VO—I-ICQI—K/ V.ds + o, v V_YdW_f]).
0 0

Through straightforward algebraic computations and the definition of t in (2.4), we
obtain that

1 T T
S”ZS)GXP{”_Z/ de+p<V;—%—K6?r+K/ de)
0 0

oy

Ny [0 fmw}

1 T
=&)6XP{”—2B+p(VT—Vo—KQr—l-KB)-{—m/ \/Vde;z)}.
Ov 0

Since the variance process { ¥} is independent of Brownian motion { w2 }, an analogy to
Example 4.7.3 in Shreve (2004) (see page 173) yields the following distributional identity:

/ ﬁdmzwﬂpzv(o, / ws> |F/' =N, B) | F/,
0 - 0

where {F/} denotes the filtration generated by { V;}. Because t and V; are F,” — measur-
able, we deduce that

Py =E®[E®[e7" max(K — S,. 0} | 7/ ]]
= E?[E® [ max{K — Syexp{p +q 2}, 0} F/]],

where Z is a standard normal variable independent of 7 and

1
p=r1:—§B+U£V(V,— Vo — k0t +kB) andg =,/(1 — p?)B,

Thus, it follows that

E?[e"" max{K — Syexp{p + ¢ Z},0} | F/]
= eirrEQ [(K - SOGXP{P + qZ})l{Sb cxp{p+qZ}§K}| Vi, T]

=e¢"TKQ (Zf é (logg — p)

Vf,r> )

VT,T].

Hence, the representation (3.7b) for timer put options follows from straightforward
calculations of the above two terms based on the standard normal distribution. O

Ee [t -0y )
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APPENDIX B: PROOF OF PROPOSITION 4.1

Proof. Recall from the definition (1.1) that

t,:inf{uiO,/ de:t}.
0
For the local martingale

(B.1) M= /Otﬁxdwé“,

the Dubins—Dambis—Schwarz theorem (see, e.g., chapter 3, theorem 4.6 in Karatzas and
Shreve 1991) yields that

(B2) M) = | A =3,

where {98,} is a standard one-dimensional Brownian motion.

To begin, we prove the distributional identity (4.8) under the Feller condition
2k6 — o} > 0, under which ¥; > 0 for all ¢ > 0. Since f(u) = [;' V;ds is an increasing
differentiable function, we have that

1
(B.3) th/ —ds.
0

Owing to

Vo=tos [ k0= vodsso, [ Tawd,
0 0

it follows that

t
1
V=" +f 7/{(9 — V,)ds + 0,B;.
0

Ts

For X, := V;,/o,, we have that

12 Y K
x= g (o o) e

Observing that 2«0 /02 + 1 > 2, the uniqueness of the solution to the SDE (4.9) yields
that

X5 2 Xp

B
D ds
Vra = VX E) .
(V1) (o B/O o\,,xs)

For the case 2«6 — ovz < 0 where the Feller condition is violated, zero is attainable but
instantaneously reflecting for the process { ¥;}. So, the state space of the Markov process
{V;,} is [0, 00). In what follows, we employ the general theory of Markov diffusion
processes (see chapter VII in Revuz and Yor 1999) to establish the distributional identity
(4.8). The proof is carried out in the following three major steps.

Thus, we obtain that
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First, we find the infinitesimal generator for {V; }. For the process {V; } starting at
V;, = x > 0, we introduce a first hitting time for zero as follows:

T = inf{u > 0, V;, = 0}.
For an arbitrary function f € C?, let

M = f(V) — f9) - fo (BA)V.)ds,

where the differential operator is defined by

K0

(B.42) B0 = 502+ (2 - k) £

We note that, for all u < Ty, (B.3) implies that

dr, = d—u

Tu

Thus, we deduce that

. ATy
My = S V) — f() = [0 BV Vadr,

TIAT

= Vo) — f(0) /0 "(BAYVo) Vidu

TInT 1
= (Vo) = () = /0 [Zofvuf”(m +i(6 — m)f/(m} du

TAT

= | S OeVid W,

0

Now, based on (B.1), we perform integration variable substitution via u = 7, and apply
the Dubins—Dambis—Schwarz theorem (see, e.g., chapter 3, theorem 4.6 in Karatzas and
Shreve 1991) to deduce that

ATy =

. TinTy tnTy ATy
M/ [ Fomdm = [ rWedm, = [ 7(V)o,d,.
0 0 0

Thus, {M,’;TU } is a martingale. According to section VII.1 in Revuz and Yor (1999), we
conclude that the infinitesimal generator of V7, on (0, co) is (B.4a).

Second, in order to prove the instantaneous reflecting property at zeros, we resort to
the method for analyzing boundary behavior of Markov diffusion discussed in chapter
VII of Revuz and Yor (1999). Let m(A) denote the speed measure of a set A4 for a process
{&}. Since zero is an instantaneously reflecting point for the variance process {V;}, we
have m({0}) = 0. Thus, the zero set of {V;} has zero Lebesgue measure, i.e.,

Mt=0:V,=0}=0, a.e. Q.

This implies that the zero set of {}7,} has Lebesgue measure zero

Mt=>0:1,=0}=0, aeQ.
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Thus, the speed measure satisfies my, ({0}) = 0. According to proposition (3.13) in chapter
VII of Revuz and Yor (1999), for any test function f in the domain for the infinitesimal
generator of {17,}, we have

dfT
U0 = mys((0)B0) = 0.

Finally, the theory of general Markov diffusion process guarantees that V7, is character-
ized by the infinitesimal generator

510 = 3720+ (5 =) 70
with domain
dft(
Dp = {f‘f, B(f) € Co([0, +00)), fds( ) _ 0} ’

where the reflection condition is given by (4.3). Hence, we showed that {};, /o,} is
equivalent in distribution to a Bessel process {X;} with drift u = —« /o, and index
0>v= /(0/01,2 —1/2 > —1/2;1.e., {VTI}Q{U\,X,}.

Finally, we prove
"ds

T, =
o Vi

For almost every w € @, we define
g(t, w) := /(;I Vi(w)ds.
It is obvious that g is continuously differentiable. Let
Z:={s >0, Vi(w) =0}
be the zero set of V(w). Forany ¢ € Z¢, the function g has a nonzero derivative g'(¢, w) =
Vi(w). According to the inverse function theorem (see pp. 221-223 in Rudin 1976), g

is invertible in a neighborhood of ¢ ; the inverse g~! is continuously differentiable and
satisfies that

—1\/ _
(B.5) (g7") (g1, ), ) = g

Based on the definition of function inverse, we have

t
(B.6) g (s, w) = 1,(w) = inf [t > 0,/ Vi(w)du = s} .
0
Thus, (B.5) implies that
dz, 1 1
B.7 —(0)s=g(t) = —— = .
(B.7) ’r (0)]s=g(t,0) o)~ Vi)

Since g is absolute continuous, the Luzin property (see Rudin 1976) guarantees that
the Lebesgue measure for g(Z, w) is zero. We also note that the process {V}} is ergodic
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(see discussions in Going-Jaeschke and Yor 2003 and Alaya and Kebaier 2011) and
proposition 4.2 in Alaya and Kebaier 2011 implies that

t

1
lim — Vids =6

t—o0 0

almost surely. So, we have f0’ Vids — oo as t — oo. Thus, the range of g(¢, w) is RT
for almost all w € . Hence, for almost every s € RT, there exists t € Z¢ such that
g(t, w) = s. So, from (B.7), we have

dr, (@) 1 1
w) = = ,
ds Vg*1 (s,w)(a)) Vt\ (o)

holding almost everywhere for s > 0. Therefore, integration on the both sides leads to

" dr, B t t 1
(w) = 1(w) — 10(w) = s (w)ds = /0 V(@) dsg./o o Xi(@) ds.

APPENDIX C: PROOF OF PROPOSITION 5.1

Proof. Based on Proposition 3.1 and Proposition 4.1, we obtain that

B _ds B
(Cl) C = EQ|:&)edU<G"XB'f° M>N<d1 (O’V XB,/ ds ))
0

oy X;

ke W N (o, X /B ds
» e 0 Uva ’
and

B
(C2) PR= ]E@[Ke‘”N (—dz <oVXB, / & ))
0 O—VA/A‘

B _ds B
-S (1 . edo(o‘-meo ”‘l*‘)N<d1 (Uv XB,/ ds ))) i|
0 GL’XY

To apply the density given in Proposition 4.2, we change the probability measure QQ to a
new one under which { X;} is a standard Bessel process. Indeed, we let l?, =B, —«t/o,.
By the Girsanov theorem, {I/S'\,} is a standard Brownian motion under a new probability
measure @ constructed through the Radon-Nikodym derivative

el £ L(EY,
F,_pJVIZGV '

Thus, under the probability measure @, {X;} is a standard Bessel process satisfying the
following semimartingale decomposition:

dQ

dQ

2] ~
dX, = =—di+dB,, X,="V/o,.
oy X,

y
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Some algebraic computation yields that

It follows from (C.1) that

~ ilo B _ds B4
G = EQH:&)EIO( v X8, [y m-/)n)N(dl (UI’XBs/ s ))
0 GL’XY
) B
_Ke i N<<O~V X, / ds ))]d@
0 O—V/Ys d@

ng|.
Thus, the timer call option price admits the following representation:

) B g . B ds
(C3) CQ == ]EPO I:L%Ql <61’XB7 \/(; O_VA/S) - KQ2 (O'V XB’ \/(; 017)(S)i| ’

where the functions Q{(v, £) and QS(v, &) are defined in Proposition 4.2. Combining
with the joint density given in Proposition 4.2, we establish the Black—Scholes—Merton-
type formula (5.1) for pricing timer call options. The formula (5.2) for pricing timer pf
options can be similarly proved.
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