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a b s t r a c t

The indispensable role of likelihood expansions in financial econometrics for continuous-timemodels has
been established since the ground-breaking work of Aït-Sahalia (1999, 2002a, 2008). Jump–diffusions
play an important role in modeling a variety of economic and financial variables. As a significant
generalization of Li (2013), we propose a new closed-form expansion for transition density of Poisson-
driven jump–diffusion models and its application in maximum-likelihood estimation based on discretely
sampled data. Technically speaking, our expansion is obtained by perturbing paths of the underlying
model; correction terms can be calculated explicitly using any symbolic software. Numerical examples
and Monte Carlo evidence for illustrating the performance of density expansion and the resulting
approximateMLE are provided in order to demonstrate the practical applicability of themethod. Using the
theoretical results in Hayashi and Ishikawa (2012), some convergence properties related to the density
expansion and the approximate MLE method can be justified under some standard sufficient (but not
necessary) conditions.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Continuous-time jump–diffusion processes have been widely
used in various fields of science and technology for providing
approximations to real-world dynamics of random fluctuations in-
volving both relatively mild diffusive evolutions and sudden dis-
continuities caused by significant shocks. In financial economics,
jump–diffusion models were introduced in the seminal work
ofMerton (1976), inwhich asset price ismodeled by a combination
of the celebrated Black–Scholes–Merton model (see Black and Sc-
holes (1973) andMerton (1973)) and a compound Poisson process.
During the past few decades, they have become a natural choice for
modeling financial variables.

The literature has witnessed an explosion of developments
and applications of jump–diffusion models in asset pricing, risk
management and portfolio consumption optimization. Various
stochastic volatility models with jump were proposed and inves-
tigated in, e.g., Bates (1996), Bates (2000), Duffie et al. (2000), Pan
(2002), Johannes et al. (2003), and Broadie et al. (2007). By enrich-
ing both diffusive and jump components as well as their interac-
tions, the affine jump–diffusion models were formally proposed

∗ Corresponding author.
E-mail addresses: cxli@gsm.pku.edu.cn (C. Li), dchen57@uic.edu (D. Chen).

http://dx.doi.org/10.1016/j.jeconom.2016.07.001
0304-4076/© 2016 Elsevier B.V. All rights reserved.
in Duffie et al. (2000), which facilitate asset pricing and econo-
metric analysis owing to their analytical tractability. For pricing
various exotic options in using analytical methods, the double ex-
ponential jump–diffusion model was proposed by Kou (2002). By
employing the backward induction principle based on the Hamil-
ton–Jacobi–Bellman equations, portfolio planning problems in-
volving jump riskwere considered in, e.g., Liu et al. (2003), Pan and
Liu (2003), Aït-Sahalia et al. (2009), Aït-Sahalia and Hurd (2015),
and Jin and Zhang (2012). By enriching specifications of jump in-
tensity according to the idea ofHawkes processes (see, e.g., Hawkes
(1971)), self-exciting andmutual-exciting jumps are considered in,
e.g., Aït-Sahalia et al. (2015), Aït-Sahalia and Hurd (2015), Errais
et al. (2010), and Giesecke et al. (2011).

Econometric analysis of jump–diffusion models leads to is-
sues that are significantly different from those typically en-
countered in discrete-time series analysis, e.g., the estimation
of models formulated in continuous-time using data sampled
at discrete-time intervals. To conduct likelihood-based infer-
ences in this practical setting, transition densities play an im-
portant role; see, e.g., related discussions in Aït-Sahalia (2002b,
2004) and the references therein. Maximum-likelihood estima-
tion (MLE hereafter) for jump–diffusions usually encounters chal-
lenges arising from time-consuming computation of transition
densities. Closed-form expressions for transition densities can-
not be obtained even for some simple jump–diffusion models,
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e.g., a jump–diffusionmean-reverting Ornstein–Uhlenbeckmodel.
To conduct MLE, one usually needs computationally intensive nu-
merical methods, e.g., Monte Carlo simulation and characteristic-
function-based inversion method. Even if characteristic functions
of the transition distribution exist in closed-form (e.g., for the
affine jump–diffusion models proposed by Duffie et al. (2000)),
the Fourier inversion based density evaluation suffers from a large
computational load for each parameter set searched in the numer-
ical procedure of optimization. Given a typically large number of
possible candidate parameter sets and a large number of obser-
vations in high-frequency financial datasets (see, e.g., the survey
in Mykland and Zhang (2010)), this is computationally expensive
(if not impractical) because of the repeated valuation of numerical
Fourier inversions in the whole procedure for MLE.

Among variousmethods for approximating transition densities,
closed-form expansions have become popular because of their
fast computing time and numerical accuracy. In particular, as a
result of the progressive development of modern computation
technology, calculation of high-order expansions will become
increasingly feasible, and thus renders arbitrary accuracy at least in
principle. For diffusionmodels, a milestone is the ground-breaking
invention of Hermite-polynomial-based density expansion and
its application in MLE proposed in Aït-Sahalia (1999, 2002a,
2008), which motivated various substantial refinements and
applications, see, e.g., Bakshi et al. (2006), Aït-Sahalia andMykland
(2004, 2003), Aït-Sahalia and Kimmel (2007, 2010), Egorov et al.
(2003), Xiu (2014), Chang and Chen (2011), Dipietro (2001),
Stramer et al. (2010), and Choi (2013, 2015a,b). Enlightened
by this stream of literature, various density expansions for
jump–diffusion models were proposed, see, e.g., Aït-Sahalia and
Yu (2006) for the application of saddle point approximation, Yu
(2007) obtained from solving for correction terms of an expansion
from Kolmogorov’s forward and backward equations, Schaumburg
(2001) for expanding transition density of a Levy-driven model
on a related functional space, Filipović et al. (2013) for a general
approximation theory in weighted Hilbert spaces for random
variables, Giesecke and Schwenkler (2011) for approximating
point process filters, as well as Choi (2015a) for approximating
transition density function of a multivariate time-inhomogeneous
jump–diffusion process in a closed-form expression.

Complementing to the existing methods, we will propose a
new closed-form expansion for transition density and apply it in
approximate MLE for multivariate Poisson-driven jump–diffusion
models. Ourmethod can be viewed as a significant extension of the
method for diffusion models proposed in Li (2013). Because of the
fundamental challenge led by adding jumps, our expansion starts
from a new method of parametrization, which can be regarded as
a path perturbation and is different from the small-time setting
employed in Li (2013) for diffusion models. With presence of
jumps, the calculation of correction terms involves various explicit
computations related to both the diffusive and jump components.
Following similar discussions in Li (2013) (see pp. 1351–1352),
our expansion can be regarded as a jump–diffusion analogy of the
celebrated Edgeworth-type expansions; see, e.g., Chapter 2 in Hall
(1995) and applications to martingales in Mykland (1992, 1993).
However, in contrast to the traditional Edgeworth expansions, our
expansion does not require the knowledge of generally implicit
moments, cumulants or characteristic function of the underlying
variable, and thus it is applicable to awide range of jump–diffusion
processes.

The theoretical foundation for validity of our expansion orig-
inates in the theory of Watanabe (1987) and Yoshida (1992) for
analyzing generalizedWiener functionals, as well as its theoretical
generalization inHayashi and Ishikawa (2012) for analyzing gener-
alized Wiener–Poisson functionals, which focus on an alternative
class of expansions relying on the theory of large-deviations. The
uniform convergence rate (with respect to various parameters) of
our density expansion for a parameterized jump–diffusion model
can be proved under some standard sufficient conditions on the
drift and diffusion coefficients. This leads to convergence of the re-
sulting approximate MLE to the true MLE; and thus, the approxi-
mate MLE inherits the asymptotic properties of the true MLE. Such
theoretical results will be supported by numerical tests andMonte
Carlo simulations for some representative examples.

The rest of this paper is organized as follows. In Section 2,we in-
troduce the model with some technical assumptions. In Section 3,
we propose the transition density expansionwith closed-form cor-
rection terms of any arbitrary order. In Section 4, numerical per-
formance of the density expansion and Monte Carlo evidence for
the resulting approximate MLE are demonstrated through exam-
ples. In Section 5, we conclude the paper and outline some oppor-
tunities for future research. Technical details on explicit calculation
of expansion terms are provided in Appendices A–D. In an online
supplementary material, Li and Chen (2016), we document some
examples of closed-form expansion formulas, proofs of the results
in the appendices, detailed calculation regarding some alternative
specifications of the jump-size distribution, some theoretical dis-
cussions on the validity of our density expansion and the resulting
approximate MLE.

2. The model and basic setup

We focus on a Poisson-driven jump–diffusion model governed
by the following stochastic differential equation (SDE hereafter):

dX(t) = µ(X(t); θ)dt + σ(X(t); θ)dW (t) + dJ(t; θ), X(0) = x0
(1)

where X(t) is a d-dimensional random vector; {W (t)} is a
d-dimensional standard Brownian motion; µ(x; θ) = (µ1(x; θ),
µ2(x; θ), . . . , µd(x; θ))⊤ is a d-dimensional vector-valued func-
tion and σ = (σij(x; θ))d×d is a d × d matrix-valued function with
an unknown parameter θ belonging to a multidimensional open
bounded set Θ . Here, J(t; θ) is a vector-valued jump process mod-
eled by a compound Poisson process which can be specified as

J(t; θ) ≡ (J1(t; θ), J2(t; θ), . . . , Jd(t; θ))⊤

:=

N(t)
n=1

Zn ≡

N(t)
n=1


Zn,1, Zn,2, . . . , Zn,d

⊤
,

where {N(t)} is a Poisson process with a constant intensity λ.
For different integers n, Zn = (Zn,1, Zn,2, . . . , Zn,d)⊤ are i.i.d.
multivariate random variables. Assuming τ1, τ2, . . ., are the jump
arrival times, the jumppath can be expressed as a step function, i.e.,

J(t; θ) =

∞
n=1


n

i=1


Zi,1, Zi,2, . . . , Zi,d

⊤ 1[τn,τn+1](t). (2)

Let E ⊂ Rd denote the state space of X .
We note that various popular jump–diffusion-based asset

pricing models (see, e.g., Merton (1976), Kou (2002), Bates (2000),
Duffie et al. (2000), and Broadie et al. (2007)) take or can be easily
transformed into the form of (1). This model relaxes the condition
on linear drift and diffusion of the affine jump–diffusion model
proposed in Duffie et al. (2000). By assuming the intensity of {N(t)}
to be a constant, the existence and uniqueness of the solution to
model (1) can be guaranteed under some technical conditions, see,
e.g., discussions in Yu (2007). Besides, this assumption is supported
by various empirical evidences, see, e.g., Bates (2000), Andersen
et al. (2002), andChernov et al. (2003). Inmodeling typical financial
variables using a multidimensional jump–diffusion model, the
small sample problem is usually severe in the estimation of
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correlations among jumps in different dimensions, since jumps
are rare even with a long span (e.g., 15 or 20 years) of data, see,
e.g., discussions in Johannes et al. (2003), Chernov et al. (2003)
and Broadie et al. (2007) on setting and estimating the correlation
between jumps in asset return and its variance under stochastic
volatility with concurrent jumps models (SVCJ). As a result, from
the perspective of econometric analysis, it is prevalent to assume
the independence among jumps in different dimensions. Without
loss of generality, we consider the following two parsimonious
examples of jump-size distribution for the purpose of illustration,
i.e., a normal distribution for modeling double-sided jumps and an
exponential distribution for modeling single-sided jumps.

Jump-Size Distribution 1. The jump size Zn has a multivariate
normal distribution with mean vector α = (α1, α2, . . . , αd) and
covariance matrix β =diag


β2
1 , β

2
2 , . . . , β

2
d


, i.e., Zn ∼ N(α, β).

Jump-Size Distribution 2. Zn has a multivariate exponential dis-
tribution, in which Zn,j’s are independent and Zn,j has an exponen-
tial distribution with intensity γj for j = 1, 2, . . . , d.

Dependence among jumps in different dimensions and other
specifications of the distribution can be similarly analyzed
following our method in a case-by-case manner. For example, by
letting some of the dimensions in the random vector Zn be zero,
we allow jumps in some but not all of the factors, see, e.g., the
jump component of the stochastic volatility model with jumps in
price only investigated in Bates (1996) and Duffie et al. (2000).
In Sections 3 and 4 of Li and Chen (2016), we provide main
techniques for performing our expansion under two alternative
specifications of the jump-size distribution. Generalizations of our
method for incorporating stochastic jump intensity (see, e.g., the
volatility–excitation considered in Pan (2002), the self-excitation
and mutual-excitation considered in, e.g., Aït-Sahalia et al. (2015),
Aït-Sahalia and Hurd (2015), Errais et al. (2010), and Giesecke et al.
(2011)) and even more general state-dependent jump component
(see, e.g., Cinlar and Jacod (1981) and Yu (2007)) will be set as a
future research project.

Before closing this section, we introduce some standard and
technical assumptions, which are conventionally proposed in the
study of stochastic differential equations (see, e.g., Ikeda and
Watanabe (1989)). Denote by A(x; θ) = σ(x; θ)σ (x; θ)⊤ the
diffusion matrix.

Assumption 1. The diffusion matrix A(x; θ) is positive definite,
i.e. det A(x; θ) > 0, for any (x, θ) ∈ E × Θ.

Assumption 2. For each integer k ≥ 1, the kth order derivatives
in x of the functionsµ(x; θ) and σ(x; θ) are uniformly bounded for
any (x, θ) ∈ E × Θ.

As discussed in Section 5 of Li and Chen (2016), these
assumptions provide sufficient conditions for the validity of
our expansion. However, as shown momentarily in Section 4,
numerical examples (e.g., the SQRJ model and the CEV-SVCJ
model) suggest that the method proposed in this paper is not
confined to the models strictly satisfying these sufficient (but not
necessary) conditions.1 Theoretical relaxation of these conditions
may involve case-by-case mathematical treatment and standard
approximation argument, which is beyond the scope of this paper
and can be regarded as a future research topic.

1 For example, as seen from the dynamics of SQRJ Model 3, the volatility function
σ(x) = σ

√
x violates Assumption 2 at the point x = 0.
3. A closed-form expansion of transition density

3.1. A general framework

By the time-homogeneity nature of jump–diffusion model (1),
we denote by p(∆, x|x0; θ) its transition density corresponding to a
time interval with length∆, i.e., the conditional density of X(t+∆)
given X(t) = x0:

P(X(t + ∆) ∈ dx|X(t) = x0) = p(∆, x|x0; θ)dx. (3)

We will propose a closed-form asymptotic expansion approxima-
tion for (3) in the following form

pM(∆, x|x0; θ) =


1

√
∆

d

detD(x0)
M

m=0

Ψm(∆, x|x0; θ),

where pM denotes an expansion up to theMth order; the functions
D(x0) and Ψm(∆, x|x0; θ), explicitly depending on the drift vector
µ, dispersion matrix σ and jump components, will be defined or
calculated in what follows.

For ease of exposition in the following discussions, we drop the
dependence of θ in dynamics of the models. For computational
convenience, we start from the following equivalent Stratonovich
form of model (1):

dX(t) = b(X(t))dt + σ(X(t)) ◦ dW (t) + dJ(t), X(0) = x0, (4)

where ◦ represents the Stratonovich integral and the new drift
vector b(x) = (b1(x), b2(x), . . . , bd(x))⊤ satisfies that

bi(x) = µi(x) −
1
2

d
k=1

d
j=1

σkj(x)
∂

∂xk
σij(x).

Thus, we parameterize dynamics (4) as

dXϵ(t)

= ϵ[b(Xϵ(t))dt + σ(Xϵ(t)) ◦ dW (t) + dJ(t)], Xϵ(0) = x0, (5)

where ϵ > 0 is an auxiliary parameter such that Xϵ(t)|ϵ=1 ≡ X(t).
Therefore, once we obtain an expansion for the transition density
of model (5)

pϵ(∆, x|x0; θ)dx := P(Xϵ(t + ∆) ∈ dx|Xϵ(t) = x0)

≡ P(Xϵ(∆) ∈ dx|Xϵ(0) = x0) (6)

as a series of ϵ, an approximation for (3) can be directly obtained
by letting ϵ = 1.

Our main idea starts from a stochastic pathwise expansion of
Xϵ(t) as a power series of ϵ around ϵ = 0. We assume that the
vector Xϵ(t) admits the followingMth order expansion

Xϵ(t) =

M
m=0

Xm(t)ϵm
+ O(ϵM+1), (7)

where Xϵ(t) = (Xϵ
1 (t), X

ϵ
2 (t), . . . , X

ϵ
d (t))

⊤ and Xm(t) = (Xm,1(t),
Xm,2(t), . . . , Xm,d(t))⊤. Thus, the rth dimension of (7) is given by

Xϵ
r (t) =

M
m=0

Xm,r(t)ϵm
+ O(ϵM+1), r = 1, 2, . . . , d.

Without any confusion, the integer M will serve as an arbitrary
order of various expansions from now on. By letting ϵ = 0 on
the both sides of parameterized model (5), it is straightforward
to obtain that dX0(t) = 0. Thus, because of the initial condition
Xϵ(0) = x0, we have the leading term as X0(t) ≡ x0. By taking first-
order derivativeswith respect to ϵ on the both sides of (5) and eval-
uating them at ϵ = 0, we obtain the first-order correction term as

X1(t) = b(x0)t + σ(x0)W (t) + J(t). (8)
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A systematical method for explicitly obtaining higher-order cor-
rection terms will be given in Section 3.3.1.

We begin by representing the transition density of {Xϵ(t)} as a
conditional expectation of Dirac Delta function (see, e.g., Kanwal
(2004)) acting on Xϵ(∆) − x, i.e.,

pϵ(∆, x|x0; θ) := E [δ(Xϵ(∆) − x)|Xϵ(0) = x0] .

In the following expositions, the initial condition of X(0) = x0 will
be omitted. To guarantee the convergence, our expansion starts
from a standardization of Xϵ(∆) into

Y ϵ(∆) :=
D(x0)
√

∆

Xϵ(∆) − x0
ϵ

, (9)

where D(x) is a diagonal matrix defined by

D(x) := diag

 d
j=1

σ 2
1j(x)

−
1
2

,


d

j=1

σ 2
2j(x)

−
1
2

, . . . ,


d

j=1

σ 2
dj(x)

−
1
2
 . (10)

Standardization (9) plays a similar role to that of the Lamperti
transformation adopted by Aït-Sahalia (1999, 2002a, 2008),
which leads to a normal distribution as the leading-order term
and accurate higher-order correction terms for constructing the
density expansion.

Assuming the pathwise expansion for Y ϵ(∆) as

Y ϵ(∆) =

M
m=0

Ym(∆)ϵm
+ O(ϵM+1), (11)

it follows from (7) and (9) that

Ym(∆) =
D(x0)
√

∆
Xm+1(∆), for m = 0, 1, 2, . . . . (12)

The corresponding elementwise form of (11) and (12) satisfies that

Y ϵ
r (∆) =

M
m=0

Ym,r(∆)ϵm
+ O(ϵM+1),

where Ym,r(∆) =
Drr(x0)
√

∆
Xm+1,r(∆), (13)

where Drr (x0) refers to the rth diagonal element of D (x0),

i.e.,Drr (x0) =

d
j=1 σ 2

rj (x)
−

1
2
. It is evident that, as ϵ → 0, Y ϵ(∆)

converges to

Y0(∆) =
B(∆)
√

∆
+

D(x0)
√

∆
(b(x0)∆ + J(∆)) , (14)

where

B(t) ≡ (B1(t), B2(t), . . . , Bd(t)) := D(x0)σ (x0)W (t) (15)

is a d-dimensional correlated Brownian motion.
Simple algebra yields that

Y ϵ(∆) −
D(x0)
√

∆


x − x0

ϵ


=

D(x0)
√

∆ϵ
(Xϵ(∆) − x) .

Thus, by the scaling property of Dirac Delta function (see,
e.g., Kanwal (2004)), we obtain that

Eδ(Xϵ(∆) − x)

=


1

√
∆ϵ

d

detD(x0)E [δ (Y ϵ(∆) − y)] |
y= D(x0)

√
∆


x−x0

ϵ

.
Heuristically speaking, by the expansion of Y ϵ(∆) and the classical
rule for differentiating composition of functions, we obtain a
Taylor-like expansion of δ(Y ϵ(∆) − y) as

δ(Y ϵ(∆) − y) =

M
m=0

Φm(y)ϵm
+ O(ϵM+1), (16)

where Φm(y) represents the mth expansion term. By taking
expectations, it is natural to obtain that

E [δ(Y ϵ(∆) − y)] :=

M
m=0

Ψm(y)ϵm
+ O(ϵM+1),

where

Ψm(y) := E [Φm(y)] .

Thus, the Mth order expansion of the density pϵ(∆, x|x0; θ) is
proposed as

pϵ
M(∆, x|x0; θ)

=


1

√
∆ϵ

d

detD(x0)
M

m=0

Ψm


D(x0)
√

∆


x − x0

ϵ


ϵm. (17)

By letting ϵ = 1, we define an Mth order approximation to the
transition density p(∆, x|x0; θ) as

pM(∆, x|x0; θ) :=


1

√
∆

d

detD(x0)
M

m=0

Ψm


D(x0)
√

∆
(x − x0)


.

(18)

We note that Y0 is non-degenerate in the Wiener–Poisson
space. Such a setting renders the validity of our expansionmethod,
based on a generalization of the theory of Watanabe (1987) and
Yoshida (1992) established in Hayashi and Ishikawa (2012). Under
some technical conditions, the convergence of (16) is in the sense
of distribution and Malliavin calculus and further renders the
convergence of (17). In this article, we focus on the practical
calculation and implementation of the density expansion; we
provide the theoretical justifications of convergence in Section 5
of Li and Chen (2016).

In practice, the explicit calculation of Ψm(y) hinges on the total
number of jump arrivals. Indeed, we deduce that

Ψm(y) = E [Φm(y)] =

∞
n=0

E [Φm(y)|N(∆) = n] P(N(∆) = n).

Thus, form, n ≥ 0, denote by

Tm,n(y) := E [Φm(y)|N(∆) = n] . (19)

Observing

P(N(∆) = n) = exp(−λ∆)
λn∆n

n!
,

we obtain that

Ψm(y) =

∞
n=0

exp(−λ∆)
λn∆n

n!
Tm,n(y). (20)

In practice, to approximate the true value, such a series can
be implemented by a truncation with a finite number of terms
approaching to numerical stability. Thus, we define

Ψm,N(y) =

N
n=0

exp(−λ∆)
λn∆n

n!
Tm,n(y). (21)
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as anNth order approximation ofΨm(y). According to the previous
discussions, density expansion (17) is further approximated by the
following double expansion
pϵ
M,N(∆, x|x0; θ)

:=


1

√
∆ϵ

d

detD(x0)
M

m=0

Ψm,N


D(x0)
√

∆


x − x0

ϵ


ϵm

≡


1

√
∆ϵ

d

detD(x0)
M

m=0

N
n=0

exp(−λ∆)
λn∆n

n!

×Tm,n


D(x0)
√

∆


x − x0

ϵ


ϵm. (22)

Finally, theMth order approximation (18) of the transition density
is further approximated by the following double summation

pM,N(∆, x|x0; θ) :=


1

√
∆

d

detD(x0)
M

m=0

N
n=0

exp(−λ∆)

×
λn∆n

n!
Tm,n


D(x0)
√

∆
(x − x0)


. (23)

Theoretical discussions related to the validity of these approxima-
tions are provided in Li and Chen (2016). In what follows, we will
concentrate on the explicit calculation of Tm,n(y) in Sections 3.2
and 3.3, an application of the density expansion in maximum-
likelihood estimation in Section 3.4, and numerical examples in
Section 4.

3.2. Calculation of the leading term T0,n(y)

It is obvious that the leading term of pathwise expansion (16) is
given by Φ0(y) = δ(Y0(∆) − y). We note that
T0,n(y) = E [δ(Y0(∆) − y)|N(∆) = n] (24)
is essentially a conditional density of Y0. By plugging (14) in (24)
and conditioning on the jump component J(∆) =

n
i=1 Zi, we

obtain that
T0,n(y) = E [E (δ(Y0(∆) − y)|J(∆),N(∆) = n) |N(∆) = n]

= E

φΣ(x0)


y −

D(x0)
√

∆
(b(x0)∆ + J(∆))


|N(∆) = n


, (25)

where Σ(x0) is the correlation matrix of Brownian motion (15),
i.e.,

Σ(x0) := (Corr(Bi(t), Bj(t)))d×d = D(x0)σ (x0)σ (x0)⊤D(x0), (26)
and φC (y) denotes the probability density of a normal distribution
with zero mean and covariance matrix C , i.e.,

φC (y) :=
1

(2π)
d
2 (det C)

1
2
exp


−

1
2
y⊤C−1y


. (27)

The explicit calculation of (25) under the assumptions of Jump-Size
Distributions 1 and 2 will be illustrated in Appendix A.

3.3. Calculation of high-order terms Tm,n(y) for m ≥ 1

3.3.1. High-order pathwise expansion in (7)
We propose an iterative algorithm for obtaining any arbitrary

order of expansion (7). Assume the following expansions according
to ϵ

b(Xϵ(t)) :=

M
m=0

bm(t)ϵm
+ O(ϵM+1), (28a)

σ(Xϵ(t)) :=

M
m=0

σm(t)ϵm
+ O(ϵM+1), (28b)
where elementwise forms of the correction terms are given by

bm(t) = (bm,1(t), bm,2(t), . . . , bm,d(t))⊤ and
σm(t) = (σm,(k,r)(t))d×d, for any m = 0, 1, 2, . . . ,M.

Thus, for any k = 1, 2, . . . , d, r = 1, 2, . . . , d, differentiation
of composite functions bk(Xϵ(t)) and σkr(Xϵ(t)) with respect to ϵ
yields that

bm,k(t) =
1
m!

∂ (m)bk (Xϵ(t))
∂ϵm


ϵ=0

=


(ℓ,(j1,j2,...,jℓ),

(r1,r2,...,rℓ))∈Sm

1
ℓ!

∂ℓbk(X0(t))
∂xr1 ∂xr2 · · · ∂xrℓ

ℓ
i=1

Xji,ri(t), (29a)

σm,(k,r)(t) =
1
m!

∂ (m)σkr (Xϵ(t))
∂ϵm


ϵ=0

=


(ℓ,(j1,j2,...,jℓ),

(r1,r2,...,rℓ))∈Sm

1
ℓ!

∂ℓσkr(X0(t))
∂xr1 ∂xr2 · · · ∂xrℓ

ℓ
i=1

Xji,ri(t), (29b)

where the index set Sm is defined by

Sm := {(ℓ, j(ℓ), r(ℓ)) |ℓ = 1, 2, . . . , j(ℓ) = (j1, j2, . . . , jℓ) with
j1, j2, . . . , jℓ ≥ 1 and j1 + j2 + · · · + jℓ = m,

r(ℓ) = (r1, r2, . . . , rℓ) with r1, r2, . . . , rℓ ∈ {1, 2, . . . , d}}.
(30)

We note that formulas (29a) and (29b) follow from the classical
differential calculus.

After plugging expansions (7), (28a) and (28b) in (5), a
comparison of the coefficients of ϵm, for m ≥ 2, in both sides of
Eq. (5) results in

dXm(t) = bm−1(t)dt + σm−1(t) ◦ dW (t), for m ≥ 2.

According to the fact that

Xϵ(0) =

M
m=0

Xm(0)ϵm
+ O(ϵM+1) ≡ x0,

a comparison of the coefficients of each order yields that

X0(0) = x0 and Xm(0) = 0, for allm ≥ 1. (31)

Thus, we obtain that

Xm(t) =

 t

0
bm−1(s)ds +

 t

0
σm−1(s) ◦ dW (s), for m ≥ 2. (32)

According to (29a) and (29b), all expressions involved on the right-
hand side of (32) contain expansion terms of X(t) with orders
at most m − 1. Therefore, iterative applications of (32) result in
explicit form of Xm(t) for any m ≥ 2 via iterated Stratonovich
integrals defined as follows.

For an arbitrary index i = (i1, i2, . . . , il) with i1, i2, . . . , il ∈

{0, 1, 2, . . . , d} and an l-dimensional stochastic process f =

{(f1(t), f2(t), . . . , fl(t))}, we introduce an iterated Stratonovich
integral

Si,f(t) :=

 t

0

 t1

0
· · ·

 tl−1

0
fl(tl) ◦ dWil(tl) · · ·

f2(t2) ◦ dWi2(t2)f1(t1) ◦ dWi1(t1), (33)

which is iteratively defined from inside to outside according
to the definition of Stratonovich integrals (see e.g., Section 3.3
in Karatzas and Shreve (1991)). Here, we let W0(t) = t . From
iteration (32), it is evident that the correction term Xji+1,ri can
be expressed by iterations and multiplications of Stratonovich
integrals. The integrands involve step function (2) created by
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jump arrivals. Without loss of generality and for the purpose
of illustration, we provide the first three closed-form pathwise
expansion terms of a one-dimensional jump–diffusion driven by
a one-dimensional Brownian motion (d = 1 in the general setting
(1)). In the following examples,wedenote byW (t) the driving one-
dimensional Brownian motion. The first order (8) can be rewritten
using iterated Stratonovich integrals as

X1(t) ≡ b(x0)S(0),(1)(t) + σ(x0)S(1),(1)(t) + J(t). (34)

For simplicity, denote by

b(k) (x) =
∂kb(x)
∂xk

and σ (k) (x) =
∂kσ(x)

∂xk
,

for integer k ≥ 1. According to iteration (32), the second order
term satisfies

X2(t) = b(1)(x0)
 t

0
X1(s)ds + σ (1)(x0)

 t

0
X1(s) ◦ dW (s). (35)

By plugging (34) in (35), X2(t) can be written as a linear combina-
tion of iterated Stratonovich integrals

X2(t) = b(1)(x0)b(x0)S(0,0),(1,1)(t) + b(1)(x0)σ (x0)S(0,1),(1,1)(t)

+ σ (1)(x0)b(x0)S(1,0),(1,1)(t) + σ (1)(x0)σ (x0)S(1,1),(1,1)(t)

+ b(1)(x0)S(0),(J(t))(t) + σ (1)(x0)S(1),(J(t))(t). (36)

Similarly, the third order satisfies

X3(t) = b(1)(x0)
 t

0
X2(s)ds +

1
2
b(2)(x0)

 t

0
X1(s)2ds

+ σ (1)(x0)
 t

0
X2(s) ◦ dW (s)

+
1
2
σ (2)(x0)

 t

0
X1(s)2 ◦ dW (s). (37)

Employing (34), we observe that

X1(t)2 = b(x0)2S(0),(1)(t)2 + 2b(x0)σ (x0)S(0),(1)(t)S(1),(1)(t)

+ σ(x0)2S(1),(1)(t)2 + 2b(x0)J(t)S(0),(1)(t)

+ 2σ(x0)J(t)S(1),(1)(t) + J2(t). (38)

Thus, X3(t) involves multiplications and iterations of Stratonovich
integralswith integrands involving jumppath (2). It is evident from
iteration (32) that such a pattern is inductively inherited by any or-
der of the expansion.

3.3.2. Calculation of Tm,n(y) for m ≥ 1
Similar to expressions (29a) and (29b), themth order correction

term for expansion (16) follows from differentiating the composite
function δ(Y ϵ(∆) − y), that is

Φm(y) =


(ℓ,j(ℓ),r(ℓ))

=(ℓ,(j1,j2,...,jℓ),(r1,r2,...,rℓ))∈Sm

1
ℓ!


1

√
∆

ℓ ℓ
i=1

Driri(x0)

×
∂ (ℓ)δ (Y0(∆) − y)
∂xr1∂xr2 · · · ∂xrℓ

ℓ
i=1

Xji+1,ri(∆). (39)

Our goal is to explicitly calculate (19).
Denote by {J(t)} the filtration generated by the jump process,

i.e., {J(t)} = σ(J(s), s ≤ t). For j(ℓ) = (j1, j2, . . . , jℓ) and r(ℓ) =

(r1, r2, . . . , rℓ), we define

Pn,(ℓ,j(ℓ),r(ℓ))(w)

:= E


ℓ

i=1

Xji+1,ri(∆)|W (∆) = w,N(∆) = n, J(∆)


, (40)
which will be calculated in the following sections as a polynomial
in w with coefficients involving polynomials of the jump arrival
times τ1, τ2, . . . , τn as well as jump amplitudes Z1, Z2, . . . , Zn. To
systematically express some derivatives involved in our expansion
terms, we introduce the following differential operator

Diu(z) :=
∂u(z)
∂zi

− u(z)(Σ(x0)−1z)i, (41)

for any index i ∈ {1, 2, . . . , d} anddifferentiable functionu(z)with
z ∈ Rd, where (Σ(x0)−1z)i denotes the ith element of the vector
Σ(x0)−1z.

We propose the following theorem for explicitly calculating
Tm,n(y).

Theorem 1. For any integer m ≥ 1, the correction term Tm,n(y)
in (19) admits the following explicit expression:

Tm,n(y) =


(ℓ,j(ℓ),r(ℓ))

=(ℓ,(j1,j2,...,jℓ),(r1,r2,...,rℓ))∈Sm

1
ℓ!


−

1
√

∆

ℓ ℓ
i=1

Driri(x0)

× E

Fn,(ℓ,j(ℓ),r(ℓ))


y −

D(x0)
√

∆
(b(x0)∆ + J(∆))


|N(∆) = n


,

(42)

where Fn,(ℓ,j(ℓ),r(ℓ))(z) is a polynomial explicitly calculated from

Fn,(ℓ,j(ℓ),r(ℓ))(z) := Dr1


Dr2


· · · Drℓ


Pn,(ℓ,j(ℓ),r(ℓ))(σ (x0)−1

×D(x0)−1
√

∆z)


· · ·


φΣ(x0)(z) (43)

with coefficients involving polynomials of the jump arrival times
τ1, τ2, . . . , τn aswell as jumpamplitudes Z1, Z2, . . . , Zn. Here,Sm and
φΣ(x0)(y) are defined in (30) and (27) , respectively.
Proof. See Appendix B. �

This theorem provides a convenient expression for calculating
the closed-form formula for Tm,n(y). For illustration, we provide
two examples under the aforementioned one-dimensional (d = 1)
case. For example, T1,1 (y) admits the following expression:

T1,1 (y) = −
D (x0)
√

∆

× E

F1,(1,(1),(1))


y −

D(x0)
√

∆
(b(x0)∆ + J(∆))


|N(∆) = 1


,

(44)
where

F1,(1,(1),(1))(z) = D

P1,(1,(1),(1))(

√
∆z)


φ(z) (45)

and
P1,(1,(1),(1))(w) = E (X2(∆)|W (∆) = w,N(∆) = 1, J(∆)) (46)
as well as J (t) = Z11[τ1,∆](t). Here, as a special case of (41), the
differential operator satisfies that Du(z) := ∂u(z)/∂z − zu(z) for
any differentiable function u; as a special case of (27), φ(z) =

e−1/2z2/
√
2π is the p.d.f. of the standard normal distribution.

Similarly, we have

T2,2 (y) = −
D (x0)
√

∆
E

F2,(1,(2),(1))

y −
D(x0)
√

∆
(b(x0)∆ + J(∆))


|N(∆) = 2


+

1
2!


−

D (x0)
√

∆

2

E

F2,(2,(1,1),(1,1))

y −
D(x0)
√

∆
(b(x0)∆ + J(∆))


|N(∆) = 2


,
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where

F2,(1,(2),(1))(z) = D

P2,(1,(2),(1))(

√
∆z)


φ(z), and

F2,(2,(1,1),(1,1))(z) = D

D

P2,(2,(1,1),(1,1))(

√
∆z)


φ(z),

and

P2,(1,(2),(1))(w) = E (X3(∆)|W (∆) = w,N(∆) = 2, J(∆)) ,

(47a)
P2,(2,(1,1),(1,1))(w) = E


X2(∆)2|W (∆) = w,N(∆) = 2, J(∆)


(47b)

as well as J (t) = Z11[τ1,τ2](t) + (Z1 + Z2) 1[τ2,∆](t).
To obtain closed-form formulas, we will provide technical

details on calculating conditional expectation (40) and jump-
component-related expectation (42) in Appendices C and D,
respectively.

3.4. An application in maximum-likelihood estimation (MLE)

Since the expansion of transition density proposed in (23)
provides an approximation for the true but unknown transition
density (3), it is natural to employ it in constructing an approx-
imation for likelihood functions. Thus, following the idea of Aït-
Sahalia (1999, 2002a, 2008), we propose a method of approximate
maximum-likelihood estimation (MLE) in what follows. Based on
the discrete observations of the jump–diffusion X defined in (1)
at time grids {∆, 2∆, . . . , n∆} for some integer n, which corre-
spond to the daily, weekly or monthly monitoring frequency, etc.,
the likelihood function is constructed as

ln(θ) =

n
i=1

p(∆t, X(i∆)|X((i − 1)∆); θ) (48)

where p is the transition density defined in (3). Assuming success in
identification, the true MLEθn is obtained by identifying the max-
imizer in θ ∈ Θ for function (48), i.e.,θn = argmax

θ∈Θ
ln(θ). (49)

By analogy, we introduce the (M,N)th order approximate likeli-
hood function as

l(M,N)
n (θ) =

n
i=1

pM,N(∆t, X(i∆)|X((i − 1)∆); θ) (50)

where pM,N is the density approximation defined in (23). Thus, the
approximate MLEθ (M,N)

n is obtained by identifying the maximizer
in θ ∈ Θ for function (50), i.e.,θ (M,N)
n = argmax

θ∈Θ
l(M,N)
n (θ). (51)

We employθ (M,N)
n as an approximation ofθn, in particular, when

the likelihood function ln(θ) is not easy to calculate. We demon-
strate the numerical performance of this method through Monte
Carlo simulation in Section 4. Theoretical discussions related to
asymptotic properties of these estimators are provided in Li and
Chen (2016).

4. Numerical performance and simulation results for MLE

Since general jump–diffusion models are rarely analytically
tractable, we begin by employing an arithmetic Brownian motion
with jump with closed-form transition density and three affine
jump–diffusion models (see, e.g., Duffie et al. (2000)) with
explicitly known characteristic functions to demonstrate the
performance of ourmethod. To provide benchmarks for testing the
accuracy of our density expansion, we truncate the infinite-series
transition density for the former example and evaluate the true
transition densities by Fourier transform inversion for the latter
three examples. For all these examples, the expansion formulas
are calculated from our general method discussed in the previous
sections. For the purpose of illustration,we provide the first several
expansion terms of these examples in Li and Chen (2016). All such
formulas and thosewith higher orders are documented in the form
of Mathematica notebook, which will be provided upon request.
The corresponding likelihood expansions will be further used in
Monte Carlo analysis for approximate MLE in Section 4.2.

The arithmetic Brownian motion with jump process (ABMJ
hereafter) is specified as follows.

Model 1. The ABMJ model:

dX(t) = µdt + σdW (t) + d


N(t)
n=0

Zn


,

where {(W (t))} is a standard one-dimensional Brownian motion
and the jump size has a normal distribution according to Jump-Size
Distribution 1, i.e., Zn ∼ N


α, β2


.

It is straightforward to obtain its transition density as the
following infinite series

P(X(∆) ∈ dx|X(0) = x0)

=

∞
n=0

1
σ 2∆ + nβ2

φ


x − x0 − µ∆ − nα

σ 2∆ + nβ2


(λ∆)n

n!
e−λ∆dx,

where φ is the probability density function of a standard normal

variable, i.e., φ(x) = e−
x2
2 /

√
2π . In the numerical experiments,

we will employ a set of parameters similar to that in Yu (2007),
i.e., µ = 0.2, σ = 0.3, λ = 0.33, α = 0 and β = 0.2.

The mean-reverting Ornstein–Uhlenbeck with jump process
(MROUJ hereafter) is specified as follows.

Model 2. The MROUJ model:

dX(t) = κ(θ − X(t))dt + σdW (t) + d


N(t)
n=0

Zn


,

where {(W (t))} is a standard one-dimensional Brownian motion
and the jump size has a normal distribution according to Jump-Size
Distribution 1, i.e., Zn ∼ N


α, β2


.

Following standard methods (see, e.g., Chapter 5 in Singleton
(2006)), the characteristic function of X(t) can be written as

φ (t; ω) = E

eiωX(t)

|X(0) = x0


= exp(A (t; ω) + x0B (t; ω)),

with i =
√

−1, (52)

where

A (t; ω) = iωθ

1 − e−κt

+
ω2σ 2 (exp(−2κt) − 1)

4κ
− λt

+
λ

2κ

 t

0
exp


iωαe−κs

−
1
2
ω2β2e−2κs


ds,

and B (t; ω) = iω exp(−κt). In the numerical experiments, wewill
employ a set of parameters similar to that in Yu (2007), i.e., κ =

0.5, θ = 0, σ = 0.2, λ = 0.33, α = 0 and β = 0.28.
The square root diffusion with jump process (SQRJ hereafter) is

specified as follows.
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Model 3. The SQRJ model:

dX(t) = κ(θ − X(t))dt + σ

X(t)dW (t) + d


N(t)
n=0

Zn


,

where {(W (t))} is a standard one-dimensional Brownian motion
and the jump size has i.i.d. exponential distributionwith parameter
γ according to Jump-Size Distribution 2, i.e., Zn ∼ expo(γ ).

This model is well known as the basic affine jump–diffusion
model (BAJD),which generalizes the celebratedCox–Ingersoll–Ross
(CIR) model; see, e.g., its application formodeling credit default in-
tensity in Duffie and Gârleanu (2001). Similar to the previous ex-
ample, the characteristic function of SQRJ can be written as

φ (t; ω) = E

eiωX(t)

|X(0) = x0


= exp(A (t; ω) + x0B (t; ω)),

with i =
√

−1,

where

A (t; ω) = −
2κθ

σ 2
× log


κ −

1
2 iωσ 2


1 − e−κt


κ



+
2λ

2κ − ω2γ
× log

κ −
1
2 iωσ 2

+ iω


σ 2

2 −
κ
γ


e−κt

κ −
iωκ
γ

 ,

and

B (t; ω) =
iωκe−κt

κ −
1
2 iωσ 2 (1 − e−κt)

.

In the numerical experiments, we will employ a set of parameters
similar to that in Duffie and Gârleanu (2001), i.e., κ = 0.6, θ =

0.02, σ = 0.141, λ = 0.2 and γ = 10.
A bivariate mean-reverting Ornstein–Uhlenbeck with jump

model (BMROUJ hereafter) is specified as

Model 4. The BMROUJ model:

d

X1(t)
X2(t)


=


κ11 0
κ21 κ22


θ1 − X1(t)
θ2 − X2(t)


dt + d


W1(t)
W2(t)



+ d


N(t)
n=1

Zn,1

N(t)
n=1

Zn,2

 ,

where {(W1(t),W2(t))} is a standard two-dimensional Brownian
motion and the jump size has a bivariate normal distribution
according to Jump-Size Distribution 1, i.e.,
Zn,1
Zn,2


∼ N


α1
α2


,


β2
1 0
0 β2

2


.

This model is an example of the multidimensional affine
jump–diffusionmodel proposed in Duffie et al. (2000). Similarly to
the previous examples, the characteristic function is obtained as

φ (t; ω1, ω2) = E

ei(ω1X1(t)+ω2X2(t))|X(0) = (x0,1, x0,2)


= exp(A (t; ω1, ω2) + B1 (t; ω1, ω2) x0,1

+ B2 (t; ω1, ω2) x0,2), with i =
√

−1.

Here, we have

A (t; ω1, ω2) = i
ω1κ11θ1


1 − e−κ11t


κ11

−
ω2

1


1 − e−2κ11t


4κ11

− i
κ21θ1 + κ22θ2

κ22 − κ11


ω1κ21


1 − e−κ11t


κ11
−
(ω1κ21 + ω2 (κ22 − κ11))


1 − e−κ22t


κ22


−

1

(κ22 − κ11)
2


(ω1κ21 + ω2 (κ22 − κ11))

2

4κ22


1 − e−2κ22t


−

ω1κ21 (ω1κ21 + ω2 (κ22 − κ11))

1 − e−(κ11+κ22)t


κ11 + κ22

+
ω2

1κ
2
21


1 − e−2κ11t


4κ11

−
λ

2

 t

0
exp


−c1e−2κ11s − c2e−2κ22s

+ c3e−(κ11+κ22)s + i

c4e−κ11s + c5e−κ22s


ds


− λt,

as well as

B1 (t; ω1, ω2) = iω1e−κ11t and B2 (t; ω1, ω2) = iω2e−κ22t

+ iω1
κ21

κ11 − κ22


e−κ11t − e−κ22t


,

where

c1(ω1, ω2) = ω2
1


κ2
11β

2
1 − 2κ11κ22β

2
1 + κ2

22β
2
1 + κ2

21β
2
2


× (κ22 − κ11)

−2 /2,
c2(ω1, ω2) = β2

2 (ω1κ21 + ω2 (κ22 − κ11))
2 (κ22 − κ11)

−2 /2,

c3(ω1, ω2) = ω1β
2
2κ21 (ω1κ21 + ω2 (κ22 − κ11)) (κ22 − κ11)

−2 ,

c4(ω1, ω2) = −ω1 (κ22 − κ11) (κ11α1 − κ22α1 + κ21α2)

× (κ22 − κ11)
−2 ,

c5(ω1, ω2) = α2 (κ22 − κ11) (ω1κ21 + ω2 (κ22 − κ11))

× (κ22 − κ11)
−2 .

In the numerical experiments, we will employ a set of parameters
in partial agreement with those employed for the bivariate
Ornstein–Uhlenbeck model studied in Cheridito et al. (2007),
i.e., κ11 = 0.1570, κ21 = 0.3279, κ22 = 2.2883, θ1 = θ2 = 0,
λ = 9, α1 = 0.2, α2 = 0.1, β1 = 0.3 and β2 = 0.5.

Given the explicit-form characteristic functions, we obtain the
density functions via numerical inversion of Fourier transform.
We choose a widely used algorithm proposed in Abate and Whitt
(1992) to accomplish this goal. Without loss of generality, we
employ MROUJ Model 2 as an example to briefly outline the
algorithm. According to Abate and Whitt (1992), the transition
density function can be obtained by

P(X(∆) ∈ dx|X(0) = x0) =
1
2π


∞

−∞

e−ixωφ (∆; ω) dω

≡
1
π


∞

0
[cos xωRe (φ) (∆; ω) + sin xωIm (φ) (∆; ω)] dω.

Thus, an efficient approximation for this density function is given
by the following Euler summation

E (m, n, x) =

m
k=1


m
k


2−msn+k (x) ,

where the truncated series is defined by

sn (x) :=
h
2π

+
h
π

n
k=1

[Re (φ) (∆; kh) cos khx

+ Im (φ) (∆; kh) sin khx] .

4.1. Accuracy of the density expansion

For the sampling increment ∆, we denote by

eM,N(∆, x|x0; θ) := pM,N(∆, x|x0; θ) − p(∆, x|x0; θ)



C. Li, D. Chen / Journal of Econometrics 195 (2016) 51–70 59
(a) MROUJ model. (b) SQRJ model. (c) BMROUJ model.

Fig. 1. Maximum relative absolute error of density approximation for Models 2, 3 and 4 with ordersM = 0, 1, 2, 3 and fixed N = 3.
(a) ABMJ model. (b) MROUJ model. (c) BMROUJ model.

Fig. 2. Maximum relative absolute error of density approximation for Models 1, 2 and 4 with orders N = 0, 1, 2, 3 and fixedM = 3.
(a) e0,1 . (b) e0,2 . (c) e0,3 .

Fig. 3. Errors of density approximation for the Arithmetic BrownianMotion with Jump (ABMJ) Model, i.e., eM,N (∆, x|x0; θ), for (M,N) = (0, 1), (0, 2), (0, 3) and∆ = 1/52.
the error of the (M,N)th order approximation, that is (23). To
demonstrate the overall accuracy of our expansion, we consider
the maximum relative error maxx∈D |eM,N(∆, x|x0; θ)/p(∆, x|x0;
θ)| over a region D , which is several standard deviations around
the mean of the forward position (i.e., E (X(∆)|X(0) = x0)).
Without loss of generality, for the ABMJ, MROUJ, and BMROUJ
models, the initial positions x0 are chosen are 0, 0, and (0, 0),
respectively; for the SQRJ model, x0 is chosen as 1.5 in order to
keep it away from 0, the boundary of this jump–diffusion process.
Considering monthly, weekly, and daily monitoring frequencies
(∆ = 1/12, 1/52, 1/252), we plot the maximum relative errors
of different ordersM = 0, 1, 2, 3 with fixed N = 3 for the MROUJ,
SQRJ, and BMROUJ models in Fig. 1 and plot the maximum relative
errors of different orders N = 0, 1, 2, 3 with fixed M = 3 for the
ABMJ, MROUJ, and BMROUJ models in Fig. 2. It is evident that the
approximation errors tend to decrease as more correction terms
are included (M and/or N increase).
In Figs. 3–5, we plot approximation errors of the density
expansion in detail for the ABMJ, MROUJ, and SQRJ models,
respectively. In Fig. 6, we plot the contours of the errors of the
density expansion for the BMROUJ model. Using the ABMJ model,
Fig. 3 demonstrates the correction effect resulting from increasing
the order N in the approximation (23). By comparing Figs. 4(a) and
4(c), Figs. 5(a) and 5(c), Figs. 6(a) and 6(c), it is easy to observe the
correction effects resulting from increasing the orderM . Similarly,
by comparing Figs. 4(b) and 4(c), Figs. 5(b) and 5(c), Figs. 6(b)
and 6(c), it is easy to observe the correction effects resulting from
increasing the order N.

4.2. Monte Carlo simulation evidence

In this section, we conduct Monte Carlo simulations to
demonstrate the performance of the approximate maximum-
likelihood estimation method proposed in Section 3.4. For the



60 C. Li, D. Chen / Journal of Econometrics 195 (2016) 51–70
(a) e1,3 . (b) e3,1 . (c) e3,3 .

Fig. 4. Errors of density approximation for the Mean-reverting Ornstein–Uhlenbeck with Jump (MROUJ) Model, i.e. eM,N (∆, x|x0; θ), for (M,N) = (1, 3), (3, 1), (3, 3) and
∆ = 1/52.
(a) e1,3 . (b) e3,1 . (c) e3,3 .

Fig. 5. Errors of density approximation for Square Root Diffusion with Jump (SQRJ) Model, i.e. eM,N (∆, x|x0; θ), for (M,N) = (1, 3), (3, 1), (3, 3) and ∆ = 1/52.
(a) e1,3 . (b) e3,1 . (c) e3,3 .

Fig. 6. Errors of density approximation for BivariateMean-reverting Ornstein–Uhlenbeckwith Jump (BMROUJ)Model, i.e. eM,N (∆, x|x0; θ), for (M,N) = (1, 3), (3, 1), (3, 3)
and ∆ = 1/52.
purpose of illustration, we begin by investigating the four models
discussed in the previous section. We employ exact simulation
methods (according to the true transition distribution) to generate
the sample paths of the jump–diffusion models, see, e.g., the
methods discussed in Chapter 3 of Glasserman (2004) and an
alternative efficient method proposed in Giesecke and Smelov
(2013).2 In our experiments, true parameters are set as those
employed in Section 4.1. In these and subsequent experiments,
the total number of simulation trials is set as 1000 and the total
number of observations on each sample path is set as n = 1000 for
each model; we consider three typical choices of the monitoring

2 We thank Kay Giesecke for generously providing the code, which was directly
applied in our simulation studies.
increment: ∆ = 1/252 (daily), ∆ = 1/52 (weekly), and ∆ =

1/12 (monthly). As seen from the Monte Carlo simulation results
in Tables 1–4, we report the mean and standard deviation of the
discrepancy between the true MLE and the true parameter value,θn − θTrue, and the discrepancy between the approximate MLE
and the true MLE,θ (M,N)

n −θn. For Model 1 as shown in Table 1,
our choices of the orders are (M,N) = (0, 1) and (0, 3), since
the simplicity of this model renders zero correction terms as M
increases to M > 0. For the other three models as shown in
Tables 2–4, our choices of the orders are (M,N) = (1, 3), (3, 1),
and (3, 3), for illustrating the effect of changingM and N.

We further demonstrate the practical applicability of our
method by employing a CEV stochastic volatility with concurrent
jump (CEV-SVCJ) model specified as follows.
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Table 1
Monte Carlo Evidence for the ABMJ Model.

Parameters Finite sample Finite sample Finite sample
θTrue θn − θTrue θ (0,1)

n −θn θ (0,3)
n −θn

Mean Stddev Mean Stddev Mean Stddev

∆ = 1/252
µ = 0.2 0.021476 0.141770 0.003296 0.019200 −0.000022 0.000099
σ = 0.3 0.007785 0.041724 0.000062 0.000251 −0.000001 0.000004
λ = 0.33 0.167720 0.427378 −0.015509 0.058959 −0.000044 0.000196
α = 0 0.000001 0.000003 0.004311 0.019276 0.000035 0.000155
β = 0.2 −0.049043 0.080835 0.005396 0.024911 0.000016 0.000072

∆ = 1/52
µ = 0.2 0.002138 0.069304 −0.000865 0.012370 −0.000049 0.001601
σ = 0.3 −0.000867 0.007273 0.000196 0.001677 −0.000001 0.000230
λ = 0.33 0.146825 0.458778 −0.046288 0.293532 −0.002605 0.068776
α = 0 −0.000773 0.009835 −0.000265 0.014892 0.000072 0.001582
β = 0.2 −0.016549 0.076476 0.001956 0.018169 0.000020 0.000723

∆ = 1/12
µ = 0.2 0.002379 0.035149 −0.000732 0.006223 0.000014 0.000347
σ = 0.3 −0.001931 0.009824 0.000535 0.002727 0.000000 0.000117
λ = 0.33 0.166236 0.496944 −0.055653 0.260738 −0.000054 0.010354
α = 0 −0.000692 0.011974 −0.000086 0.008871 −0.000007 0.000188
β = 0.2 −0.005491 0.066906 0.001428 0.011922 0.000008 0.000229

Notes. The number of simulation trials is set as 1000 and the number of observations on each path is n = 1000.
Table 2
Monte Carlo Evidence for the MROUJ Model.

Parameters Finite sample Finite sample Finite sample Finite sample
θTrue θn − θTrue θ (1,3)

n −θn θ (3,1)
n −θn θ (3,3)

n −θn
Mean Stddev Mean Stddev Mean Stddev Mean Stddev

∆ = 1/252
κ = 0.5 0.030645 0.061289 0.018137 0.032763 0.012603 0.039911 0.001266 0.002531
θ = 0 −0.000104 0.000208 0.000415 0.000486 −0.000040 0.001132 −0.000076 0.000152
σ = 0.2 0.000106 0.000212 0.001667 0.003584 0.000050 0.000460 −0.000007 0.000014
λ = 0.33 −0.013829 0.027658 0.028869 0.061288 0.001541 0.054470 −0.000552 0.001104
α = 0 −0.000723 0.001445 0.000345 0.000635 −0.000208 0.001131 0.000012 0.000024
β = 0.28 0.068028 0.136055 −0.062129 0.121034 0.001449 0.009289 −0.000112 0.000224

∆ = 1/52
κ = 0.5 0.226511 0.076686 0.004611 0.001503 0.006773 0.002436 −0.000697 0.000986
θ = 0 0.001394 0.001029 −0.000408 0.001137 −0.000150 0.000571 0.000019 0.000027
σ = 0.2 0.003059 0.001773 −0.000065 0.000021 0.000022 0.000403 0.000062 0.000088
λ = 0.33 0.257111 0.222929 −0.009779 0.005662 −0.005719 0.004870 −0.000463 0.000655
α = 0 −0.000234 0.001390 0.000267 0.000648 0.000077 0.000589 0.000006 0.000009
β = 0.28 −0.091571 0.079626 −0.000028 0.001381 0.002702 0.007062 −0.000053 0.000075

∆ = 1/12
κ = 0.5 0.018959 0.115585 0.012132 0.008716 0.000775 0.004838 0.000649 0.002034
θ = 0 0.000009 0.000027 0.000095 0.000302 0.000065 0.000453 −0.000006 0.000019
σ = 0.2 0.004006 0.005580 0.000231 0.000450 0.000075 0.000413 0.000122 0.000287
λ = 0.33 0.079698 0.108969 0.001533 0.004054 −0.008227 0.005262 −0.000033 0.000104
α = 0 0.000002 0.000007 0.000041 0.000131 −0.000257 0.000117 0.000004 0.000012
β = 0.28 0.000910 0.049361 0.000335 0.002419 −0.009980 0.003020 0.000338 0.000713

Notes. The number of simulation trials is set as 1000 and the number of observations on each path is n = 1000.
Model 5. The CEV-SVCJ model:

d

X1(t)
X2(t)


=


µ −

1
2
X2(t)

κ (θ − X2(t))


dt

+

 
X2(t) 0

σρX2(t)α σ

1 − ρ2X2(t)α


d

W1(t)
W2(t)



+ d


N(t)
n=1

Zn,1

N(t)
n=1

Zn,2

 ,

where {(W1(t),W2(t))} is a standard two-dimensional Brownian
motion. According to Duffie et al. (2000), we assume that the
jump size in variance Zn,2 has an exponential with parameter
γ2. Conditional on a jump realization Zn,2, the jump size in X1(t)
is normally distributed according to the conditional distribution
Zn,1|Zn,2 ∼ N(µ1 + ρJZn,2, σ 2

1 ).

This model generalizes the affine SVCJ model investigated
in Duffie et al. (2000) by allowing nonaffine specifications and
extends the CEV stochastic volatility model investigated in Aït-
Sahalia and Kimmel (2007) by adding jumps. As suggested
by Duffie et al. (2000), X1(t) can be used to model asset return;
accordingly, X2(t) can be used to model its stochastic variance.
Without loss of generality, we employ two parameter sets in the
Monte Carlo simulations. Corresponding to the affine SVCJ model,
the first parameter set is given by µ = 0.03, κ = 3, θ =

0.1, σ = 0.25, α = 0.5, ρ = −0.8, λ = 0.47, µ1 = −0.10,
σ1 = 0.0001, ρJ = −0.38, and γ2 = 20. As a nonaffine case, the
second parameter set is given by µ = 0.03, κ = 4, θ = 0.05,
σ = 0.75, α = 0.8, ρ = −0.75, λ = 0.47, µ1 = −0.10,
σ1 = 0.0001, ρJ = −0.38, and γ2 = 20. These parameter sets
are in partial agreement with the estimated parameters from Aït-
Sahalia and Kimmel (2007) as well as the calibrated parameters
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Table 3
Monte Carlo Evidence for the SQRJ Model.

Parameters Finite sample Finite sample Finite sample Finite sample
θTrue θn − θTrue θ (1,3)

n −θn θ (3,1)
n −θn θ (3,3)

n −θn
Mean Stddev Mean Stddev Mean Stddev Mean Stddev

∆ = 1/252
κ = 0.6 −0.073254 0.004977 −0.001686 0.000662 0.048160 0.000923 0.000009 0.000013
θ = 0.02 0.005587 0.002711 0.002867 0.003614 0.038388 0.003893 −0.000337 0.000477
σ = 0.141 −0.000132 0.000208 −0.000003 0.000005 −0.000188 0.000000 −0.000002 0.000003
λ = 0.2 0.076182 0.228058 0.007174 0.003860 −0.049411 0.001088 −0.000046 0.000064
γ = 10 0.196001 0.277187 −0.071938 0.176927 0.000739 0.002646 −0.000269 0.000839

∆ = 1/52
κ = 0.6 0.059112 0.016394 −0.000252 0.000489 0.000904 0.001132 0.000051 0.000350
θ = 0.02 0.012609 0.024885 0.000541 0.000848 0.000600 0.000514 0.000078 0.000442
σ = 0.141 −0.000242 0.000382 −0.000110 0.000036 −0.000003 0.000016 −0.000008 0.000019
λ = 0.2 −0.033253 0.087899 0.015980 0.017179 −0.003744 0.007501 0.000104 0.003477
γ = 10 0.161996 0.212702 −0.174539 0.217127 0.000051 0.014237 −0.001943 0.003887

∆ = 1/12
κ = 0.6 −0.004761 0.013056 0.000056 0.000962 −0.000323 0.001168 0.000013 0.000034
θ = 0.02 0.001308 0.002733 0.004804 0.008235 0.000451 0.001139 0.000036 0.000082
σ = 0.141 −0.000198 0.000391 −0.000075 0.000141 −0.000152 0.000054 0.000002 0.000005
λ = 0.2 −0.065673 0.182982 −0.014253 0.078604 0.012678 0.014106 0.000483 0.001080
γ = 10 0.082496 0.116678 0.079719 0.346084 −0.019243 0.010672 0.000208 0.000294

Notes. The number of simulation trials is set as 1000 and the number of observations on each path is n = 1000.
Table 4
Monte Carlo Evidence for the BMROUJ Model.

Parameters Finite sample Finite sample Finite sample Finite sample
θTrue θn − θTrue θ (1,3)

n −θn θ (3,1)
n −θn θ (3,3)

n −θn
Mean Stddev Mean Stddev Mean Stddev Mean Stddev

∆ = 1/252
κ11 = 0.1570 0.004660 0.011640 0.000544 0.012311 0.000744 0.042146 0.000098 0.006109
κ21 = 0.3279 0.007827 0.024166 0.025917 0.032805 −0.050358 0.269770 −0.000300 0.012732
κ22 = 2.2883 0.033425 0.176910 0.242949 0.249903 0.089786 0.187985 −0.000439 0.095596
θ1 = 0 −0.000093 0.000292 −0.000100 0.000528 0.004543 0.001590 0.000009 0.000255
θ2 = 0 −0.000093 0.000250 −0.000109 0.000493 0.008386 0.007982 −0.000041 0.000262
λ = 9 0.928836 0.942508 0.299744 0.879494 −0.118305 0.325743 −0.006459 0.437318
α1 = 0.2 −0.013176 0.016091 −0.004234 0.013029 0.004232 0.054184 0.000418 0.007730
α2 = 0.1 −0.008912 0.019549 −0.005194 0.013036 0.050591 0.087059 −0.000246 0.006902
β1 = 0.3 −0.001822 0.008944 −0.003823 0.009860 0.040831 0.049751 0.000701 0.005080
β2 = 0.5 0.045888 0.029032 −0.006084 0.021357 0.025910 0.030929 0.000728 0.011999

∆ = 1/52
κ11 = 0.1570 0.001438 0.012208 −0.000376 0.003714 0.056400 0.002522 0.000043 0.000947
κ21 = 0.3279 0.002863 0.025816 −0.000037 0.006722 −0.000472 0.009470 −0.000054 0.001365
κ22 = 2.2883 0.022048 0.173931 0.004892 0.044678 0.008020 0.020741 −0.000681 0.010617
θ1 = 0 −0.000004 0.000218 −0.000035 0.000830 −0.000061 0.000905 −0.000001 0.000025
θ2 = 0 0.000006 0.000217 −0.000001 0.000093 0.000002 0.000086 −0.000001 0.000018
λ = 9 0.20399 0.633815 −0.003968 0.171036 −0.003919 0.065517 0.002565 0.052984
α1 = 0.2 −0.002022 0.019001 −0.000243 0.005043 −0.000781 0.007676 0.000022 0.000992
α2 = 0.1 −0.004155 0.021997 −0.000111 0.004160 −0.000514 0.002707 0.000085 0.001285
β1 = 0.3 0.000692 0.007507 0.000185 0.002927 −0.000362 0.004451 −0.000008 0.000480
β2 = 0.5 0.007557 0.036205 0.000121 0.007023 −0.000208 0.004114 −0.000035 0.001533

∆ = 1/12
κ11 = 0.1570 0.000366 0.004175 0.000222 0.003316 −0.000321 0.004436 0.000027 0.000546
κ21 = 0.3279 0.001168 0.010937 0.000140 0.008242 0.000559 0.003467 −0.000031 0.001324
κ22 = 2.2883 0.015837 0.110700 0.000413 0.036098 0.000585 0.012586 0.000515 0.018027
θ1 = 0 −0.000000 0.000119 0.000085 0.002728 0.000645 0.002084 0.000003 0.000093
θ2 = 0 −0.000001 0.000121 0.000036 0.001012 0.000059 0.007691 0.000003 0.000075
λ = 9 0.081659 0.448389 −0.002326 0.132204 0.000992 0.104276 −0.004515 0.095104
α1 = 0.2 0.001418 0.009973 0.000192 0.003463 0.001673 0.002303 −0.000013 0.000217
α2 = 0.1 0.003280 0.016796 0.000075 0.005034 0.000877 0.005291 0.000007 0.000571
β1 = 0.3 0.000319 0.003235 0.000308 0.010172 0.000412 0.002681 0.000023 0.000785
β2 = 0.5 0.003356 0.030656 −0.000839 0.009294 0.000733 0.006212 0.000062 0.003930

Notes. The number of simulation trials is set as 1000 and the number of observations on each path is n = 1000.
from Duffie et al. (2000). We employ Euler discretizations to
generate the sample paths of this model, see, for example, Chapter
6 of Glasserman (2004). In the numerical experiments exhibited in
Tables 5 and 6, we report the mean and standard deviation of the
discrepancy between the approximateMLE and the true parameter
value,θ (M,N)

n − θTrue, for (M,N) = (1, 3), (3, 1), and (3, 3).
As shown from the numerical results in Tables 1–4, when the

order of approximation increases, the approximateMLEs get closer
to the exact (but usually incomputable) MLEs, and thus get closer
to the true parameter, if the sample size n is large enough. Thus, the
approximateMLEs obtained bymaximizing the approximate likeli-
hood function approach the asymptotic efficiency of the trueMLEs.
This phenomenon agrees with the accuracy of our density expan-
sion investigated in Section 5 of Li and Chen (2016) and reconciles
our theoretical discussions on the asymptotic property of the ap-
proximate MLE in Section 6 of Li and Chen (2016). As shown in



C. Li, D. Chen / Journal of Econometrics 195 (2016) 51–70 63
Table 5
Monte Carlo Evidence for the Affine SVCJ Model.

Parameters Finite sample Finite sample Finite sample
θTrue θ (1,3)

n − θTrue θ (3,1)
n − θTrue θ (3,3)

n − θTrue

Mean Stddev Mean Stddev Mean Stddev

∆ = 1/252
µ = 0.03 0.000364 0.000706 −0.000156 0.001610 0.000219 0.000451
κ = 3 0.328481 0.143916 0.171773 0.383091 0.038922 0.060455
θ = 0.1 0.000619 0.020642 0.001073 0.006309 0.001626 0.002313
σ = 0.25 −0.003245 0.055997 0.022458 0.048356 −0.001101 0.016275
ρ = −0.8 0.001641 0.008685 0.009610 0.059919 0.008991 0.043841
λ = 0.47 0.001044 0.007557 −0.020646 0.050806 0.000105 0.000616
µ1 = −0.10 −0.002672 0.001487 0.015115 0.057429 −0.002282 0.004846
σ1 = 0.0001 0.000001 0.000004 −0.000001 0.000003 0.000000 0.000003
ρJ = −0.38 −0.000639 0.001487 0.000116 0.006628 −0.000420 0.000753
γ2 = 20 0.208234 0.517280 −0.174754 0.655111 0.067385 0.021390

∆ = 1/52
µ = 0.03 0.000295 0.000945 0.000115 0.000312 −0.000046 0.000885
κ = 3 0.124675 0.398034 0.034114 0.074008 0.001789 0.001494
θ = 0.1 0.000558 0.005378 0.001832 0.003928 0.000641 0.005608
σ = 0.25 0.006401 0.028605 −0.000509 0.009599 0.000045 0.000258
ρ = −0.8 0.003375 0.054602 0.018891 0.057645 0.014652 0.047471
λ = 0.47 −0.001855 0.010300 0.005485 0.016746 0.000382 0.004148
µ1 = −0.10 0.003248 0.023227 −0.003413 0.012143 −0.002008 0.005823
σ1 = 0.0001 −0.000001 0.000008 0.000001 0.000003 0.000001 0.000002
ρJ = −0.38 0.001835 0.008196 −0.000521 0.001289 0.000129 0.000383
γ2 = 20 0.149504 0.620797 0.139752 0.302418 0.053390 0.111969

∆ = 1/12
µ = 0.03 0.000149 0.000275 0.000262 0.000491 0.000007 0.000010
κ = 3 0.026804 0.067132 0.030145 0.055030 −0.007464 0.001053
θ = 0.1 0.001014 0.004378 0.002082 0.002431 −0.003325 0.004703
σ = 0.25 0.001807 0.005018 −0.001046 0.016289 0.026106 0.036919
ρ = −0.8 0.018800 0.052283 0.012469 0.044603 0.001919 0.008317
λ = 0.47 0.005566 0.016069 −0.021294 0.030114 0.000888 0.005609
µ1 = −0.10 −0.002509 0.005310 −0.002365 0.004889 0.002329 0.003293
σ1 = 0.0001 0.000001 0.000002 0.000001 0.000003 −0.000003 0.000004
ρJ = −0.38 −0.000700 0.001376 −0.000442 0.000778 −0.003554 0.005026
γ2 = 20 0.074488 0.218087 0.071733 0.214253 0.004023 0.005699

Notes. The number of simulation trials is set as 1000 and the number of observations on each path is n = 1000.
Tables 1–4, while holding the length of sampling interval ∆ fixed,
the approximation errorθ (M,N)

n −θn decreases and is dominated
by the intrinsic sampling errorθn − θTrue as M and/or N increase.
According to Aït-Sahalia (1999, 2002a, 2008), once the approxi-
mation error resulted from replacing the true likelihood (48) by
its approximation (50), is dominated by the sampling error due to
the true MLE, approximate MLEθ (M,N)

n is appropriate in practice;
such a proper replacement has an effect that is statistically indis-
cernible from the sampling variation of the true but incomputable
MLE θn around θ. Thus, following the discussions in Aït-Sahalia
(1999, 2002a, 2008), a small-order approximation is adequate for
replacing the true MLEθn for the purpose of estimating unknown
parameter θ.

Similarly, as exhibited in Tables 5 and 6, the performance the
approximate MLE measured byθ (M,N)

n − θTrue is improved as M
and/or N increase for n large enough. This phenomenon reconciles
the consistency of the incomputable true MLEθn as well as the im-
provement of the approximation error ofθ (M,N)

n −θn as orders in-
crease. As a result of the fast development of modern computation
technology, calculation of high-order likelihood approximations
will become increasingly feasible; thus the performance of our ap-
proximate MLEs can be arbitrarily improved at least in principle.

5. Concluding remarks

In this paper,we propose a closed-formexpansion for transition
density of Poisson-driven jump–diffusion models, for which
any arbitrary order of correction terms can be systematically
obtained through a generally implementable algorithm. As an
application, likelihood function is approximated explicitly and
thus employed in approximate maximum-likelihood estimation
(MLE) for jump–diffusion models from discretely sampled data.
Numerical examples and Monte Carlo evidence for illustrating
the performance of our density expansion and the resulting
approximate MLE are provided in order to demonstrate the wide
applicability of themethod. The convergence related to the density
expansion and the approximate MLE are theoretically justified
under some standard (but not necessary) sufficient conditions.
Owing to the limited space of this paper, which focuses on
introducing a method of estimation, investigations on more
asymptotic properties related to the approximate MLE can be
regarded as a future research topic. One may also apply the idea
of explicitly approximating transition density in various other
aspects of financial econometrics, for which explicit asymptotic
expansions of certain quantities, e.g., option price, are helpful. An
extension of the current method in order to incorporate more
general jump–diffusion models (see, e.g., Cinlar and Jacod (1981)
and Yu (2007)) can be set as another important direction for future
research.
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Table 6
Monte Carlo Evidence for the CEV-SVCJ Model.

Parameters Finite sample Finite sample Finite sample
θTrue θ (1,3)

n − θTrue θ (3,1)
n − θTrue θ (3,3)

n − θTrue

Mean Stddev Mean Stddev Mean Stddev

∆ = 1/252
µ = 0.03 0.000341 0.000096 0.000169 0.000817 0.000046 0.000024
κ = 4 0.045455 0.012856 0.026933 0.089693 0.001388 0.004946
θ = 0.05 0.000568 0.000161 0.000148 0.002660 0.000032 0.000195
σ = 0.75 0.008523 0.002411 0.002415 0.019433 0.000343 0.002240
α = 0.8 −0.014545 0.035998 0.016998 0.022219 0.000503 0.003305
ρ = −0.75 0.034091 0.057854 0.019868 0.073066 0.000202 0.005833
λ = 0.47 0.005341 0.001511 0.003360 0.012329 −0.000059 0.000743
µ1 = −0.10 −0.004318 0.001221 −0.001009 0.005007 −0.000185 0.000502
σ1 = 0.0001 0.000001 0.000000 0.000001 0.000005 0.000000 0.000002
ρJ = −0.38 −0.001136 0.000321 −0.000349 0.001433 −0.000433 0.000107
γ2 = 20 0.227273 0.064282 0.147132 0.396738 0.002961 0.026454

∆ = 1/52
µ = 0.03 0.000514 0.000726 0.000052 0.000153 0.000012 0.000066
κ = 4 0.126993 0.179595 0.017026 0.066626 0.005203 0.010674
θ = 0.05 0.001811 0.002561 0.000347 0.001060 0.000016 0.000125
σ = 0.75 0.025743 0.016627 0.007148 0.018427 −0.000479 0.003095
α = 0.8 −0.007838 0.011085 0.013408 0.029640 0.001489 0.002908
ρ = −0.75 0.071619 0.101285 −0.003591 0.023346 0.001294 0.004984
λ = 0.47 0.000121 0.000171 −0.000045 0.002416 0.000187 0.000801
µ1 = −0.10 −0.016252 0.022983 −0.000228 0.001075 −0.000292 0.000361
σ1 = 0.0001 −0.000000 0.000000 −0.000000 0.000001 0.000000 0.000001
ρJ = −0.38 0.000484 0.000685 −0.000136 0.001347 −0.000086 0.000171
γ2 = 20 0.183647 0.259717 0.095744 0.266145 0.000824 0.026568

∆ = 1/12
µ = 0.03 0.000046 0.000619 0.000151 0.000337 −0.000010 0.000047
κ = 4 −0.069939 0.190072 0.013383 0.046579 0.001695 0.005898
θ = 0.05 0.001592 0.001112 0.000257 0.000798 0.000019 0.000154
σ = 0.75 0.025906 0.019544 0.004547 0.010606 0.000472 0.002314
α = 0.8 −0.057450 0.065819 0.001519 0.025132 0.001733 0.002930
ρ = −0.75 0.014489 0.082946 −0.011847 0.025319 0.000551 0.005274
λ = 0.47 −0.003380 0.015492 0.000747 0.002201 −0.000031 0.000697
µ1 = −0.10 −0.009448 0.004701 0.000400 0.005663 −0.000208 0.000456
σ1 = 0.0001 0.000002 0.000000 0.000000 0.000000 0.000000 0.000001
ρJ = −0.38 −0.002040 0.000606 −0.000260 0.000548 −0.000058 0.000178
γ2 = 20 0.177732 0.204470 0.038872 0.088285 0.003001 0.003154

Notes. The number of simulation trials is set as 1000 and the number of observations on each path is n = 1000.
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Appendix A. Calculation of (A.1)

To explicitly calculate T0,n(y) from formula (25) under the
assumptions of Jump-Size Distributions 1 and 2, it is sufficient to
consider the explicit calculation of the following expectation

E


φΣ(x0) (A + BJ(∆))

d
l=1

Jl(∆)nl |N(∆) = n


, (A.1)

where A = (A1, A2, . . . , Ad)
⊤ and B = diag(B1, B2, . . . , Bd)

for some constantsA1, A2, . . . , Ad, B1, B2, . . . , Bd andnon-negative
integers n1, n2, . . . , nd. As shown momentarily in Appendix D, the
explicit calculation of (42) for constructing higher-order correction
terms also hinges on (A.1).

Under Jump-Size Distribution 1, conditioning on N(∆) =

n, Jl(∆) =
N(∆)

i=1 Zi,l has a univariate normal distribution,
i.e., Jl(∆)|N(∆) = n ∼ N


nαl, nβ2

l


. We have the following

Lemma.
Lemma 1. Let

Σ(x0) :=

B⊤Σ(x0)−1B + (nβ)−1−1

and

Q = B⊤Σ(x0)−1A − β−1α, (A.2)

where α and β are the mean vector and the covariance matrix
introduced in Jump-Size Distribution 1, respectively. We have

E


φΣ(x0) (A + BJ(∆))

d
l=1

Jl(∆)nl |N(∆) = n



=
(det Σ(x0))

1
2

(2π)
d
2 (detΣ(x0) det nβ)

1
2

× exp


−
1
2
A⊤Σ(x0)−1A −

n
2
α⊤β−1α +

1
2
Q⊤Σ(x0)Q


×

∂ (n1)∂ (n2) · · · ∂ (nd)

∂θ
n1
1 ∂θ

n2
2 · · · ∂θ

nd
d

× exp


−θ⊤Σ(x0)Q +
1
2
θ⊤Σ(x0)θ


θ1,θ2,...,θd=0

,

where θ = (θ1, θ2, . . . , θd)
⊤ .

Proof. The proof of the lemma follows from straightforward
calculations; see Section 2.1 of Li and Chen (2016). �
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Thus, denoting by

A = y − D(x0)b(x0)
√

∆ and B = −
D(x0)
√

∆
(A.3)

and letting n1, n2, . . . , nd = 0, it is easy to obtain the leading term
T0,n(y) as

T0,n(y) = φΣ(x0)+
n
∆ D(x0)βD(x0)


y − D (x0) b (x0)

√
∆

−
n

√
∆

D (x0) α


. (A.4)

Under Jump-Size Distribution 2, conditioning on N(∆) = n,
Jl(∆) has an Erlang distribution (see, e.g., Chapter 17 in Johnson
et al. (1996)) with p.d.f.

P(Jl(∆) ∈ dv|N(∆) = n) =
γ n
l

(n − 1)!
exp(−γlv)vn−1dv, (A.5)

for each l = 1, 2, . . . , d. Similar to Lemma 1, we have the following
formula.

Lemma 2. LetA = (A1,A2, . . . ,Ad)
⊤

= Σ(x0)

B−1⊤ B⊤Σ(x0)−1A + Γ


with Γ = (γ1, γ2, . . . , γl)

⊤. (A.6)

We have

E


φΣ(x0) (A + BJ(∆))

d
l=1

Jl(∆)nl |N(∆) = n



=
1

det B

d
l=1

γ n
l

(n − 1)!
(−1)

(n−1)d+
d

l=1
nl

×
∂n1+n−1∂n2+n−1

· · · ∂nd+n−1

∂γ
n1+n−1
1 ∂γ

n2+n−1
2 · · · ∂γ

nd+n−1
d


exp


−

1
2
A⊤Σ(x0)−1A

+
1
2
A⊤Σ(x0)−1ANΣ(x0)


−A . (A.7)

Here, NC (·) denotes the cumulative distribution function of a normal
distribution with zero mean and covariance matrix C .

Proof. The proof of the lemma follows from straightforward
calculations; see Section 2.2 of Li and Chen (2016). �

Thus, it is easy to obtain the leading term T0,n(y) by plugging
n1, n2, . . . , nd = 0 in formula (A.7).

Appendix B. Proof of Theorem 1

Proof. Following (19) and (39), we have

Tm,n(y) =


(ℓ,j(ℓ),r(ℓ))

=(ℓ,(j1,j2,...,jℓ),(r1,r2,...,rℓ))∈Sm

1
ℓ!


1

√
∆

ℓ ℓ
i=1

Driri(x0)

×E


∂ (ℓ)δ (Y0 − y)

∂xr1∂xr2 · · · ∂xrℓ

ℓ
i=1

Xji+1,ri |N(∆) = n


.

We note that

E


∂ (ℓ)δ (Y0 − y)

∂xr1∂xr2 · · · ∂xrℓ

ℓ
i=1

Xji+1,ri |N(∆) = n



= E


E


∂ (ℓ)δ (Y0 − y)
∂xr1∂xr2 · · · ∂xrℓ

×

ℓ
i=1

Xji+1,ri |N(∆) = n, J(∆)


|N(∆) = n


.

Recall that En(·) denotes the conditional expectation operator
E (·|N(∆) = n, J(∆)). Moreover, we denote by

z := y −
D(x0)
√

∆
(b(x0)∆ + J(∆)) .

Using the integration-by-parts formula ofDiracDelta function (see,
e.g., Section 2.6 in Kanwal (2004)) and recalling (14), we arrive at

En


∂ (ℓ)δ (Y0 − y)

∂xr1∂xr2 · · · ∂xrℓ

ℓ
i=1

Xji+1,ri



=


∞

−∞

∂ (ℓ)δ (w − z)
∂xr1∂xr2 · · · ∂xrℓ

En


ℓ

i=1

Xji+1,ri |
B(∆)
√

∆
= w



× φΣ(x0)(w)dw = (−1)ℓ
∂ (ℓ)

∂zr1∂zr2 · · · ∂zrℓ
En


ℓ

i=1

Xji+1,ri |
B(∆)
√

∆
= z


φΣ(x0)(z)


.

Recalling the definitions of (15) and (40) and noticing that, for any
smooth function u(z),

∂

∂zi
(u(z)φΣ(x0)(z)) =


∂u(z)
∂zi

− u(z)(Σ(x0)−1z)i


φΣ(x0)(z)

≡ Diu(z),

we obtain formulas (42) and (43) immediately. �

Appendix C. Calculation of (40)

C.1. Conversion from multiplication to linear combination

The first technical issue is to convert Xj1+1,r1Xj2+1,r2 · · · Xjℓ+1,rℓ
into a linear combination of iterated Stratonovich integrals using
the following lemma. For an arbitrary index i =(i1, i2, . . . , il),
we denote by −i the index obtained from deleting the first
component of index i, i.e., −i =(i2, i3, . . . , il). Similarly, let −f =

{(f2(t), f3(t), . . . , fl(t))}. Thus, it is obvious that

S−i,−f(t) :=

 t

0
· · ·

 tl−1

0
fl(tl) ◦ dWil(tl) · · · f2(t2) ◦ dWi2(t2).

Lemma 3. For two indices i = (i1, i2, . . . , il) and j = (j1, j2, . . . , jk)
as well as stochastic processes f = {(f1(t), f2(t), . . . , fl(t))} and
g = {(g1(t), g2(t), . . . , gk(t))}, we have

Si,f(t)Sj,g(t) =

 t

0
Si,f(u)S−j,−g (u)g1(u) ◦ dWj1(u)

+

 t

0
Sj,g(u)S−i,−f(u)f1(u) ◦ dWi1(u). (C.1)

Proof. See Section 2.3 of Li and Chen (2016). �

For example, applications of (C.1)) to the products generated by
(38) yields that

S(0),(1)(t)2 = 2S(0,0),(1,1)(t),
S(0),(1)(t)S(1),(1)(t) = S(0,1),(1,1)(t) + S(1,0),(1,1)(t),

S(1),(1)(t)2 = 2S(1,1),(1,1)(t).

Thus, we obtain a linear combination form of X1(t)2 as
X1(t)2 = 2b(x0)2S(0,0),(1,1)(t)

+ 2σ(x0)b(x0)

S(0,1),(1,1)(t) + S(1,0),(1,1)(t)


+ 2σ(x0)2S(1,1),(1,1)(t) + 2b(x0)J(t)S(0),(1)(t)

+ 2σ(x0)J(t)S(1),(1)(t) + J2(t).



66 C. Li, D. Chen / Journal of Econometrics 195 (2016) 51–70
By plugging this expression and (36) in (37), it is straightforward
to write X3(t) as a linear combination of iterated Stratonovich
integrals. Due to the length of this paper, we omit such a tedious
formula. Similarly, to simplify X2(∆)2 for calculating (47b), we
need the following conversion among others:

S(1),(J(t))(t)2 = 2S(1,1),(J(t),J(t))(t).

C.2. Conversion from iterated Stratonovich integrals to Itô integrals

In this section, we discuss the conversion from iterated
Stratonovich integral (33) to a linear combination of iterated
Itô integrals defined in a similar way except for changing the
Stratonovich integrals in (33) into that of Itô sense, i.e.,

Ii,f(t) =

 t

0

 t1

0
· · ·

 tl−1

0
fl(tl)dWil(tl) · · · f2(t2)dWi2(t2)f1(t1)

× dWi1(t1). (C.2)

Since the conditioned jump path is stepwise constant, we
concentrate on the case where fi are step functions. By using the
fact that, for two continuous semimartingales X and Y , t

0
X(s) ◦ dY (s) =

 t

0
X(s)dY (s) +

1
2

⟨X, Y ⟩ (t),

see, e.g., Section II.7 in Protter (1990), we will generalize
the relation between iterated Stratonovich and Itô integrals
investigated in Section 5.2 of Kloeden and Platen (1992). Define the
length of i = (i1, i2, . . . , il) with i1, i2, . . . , il ∈ {0, 1, 2, . . . , d} by

l(i) := l((i1, i2, . . . , il)) = l. (C.3)

Let ς denote the index with zero length, i.e., l(ς) = 0. We propose
the following lemma.

Lemma 4. For an arbitrary index i = (i1, i2, . . . , il) with i1, i2,
. . . , il ∈ {0, 1, 2, . . . , d}, if l(i) = 0, 1, we have Si,f(t) = Ii,f(t);
if l(i) ≥ 2, we have

Si,f(t) =

 t

0
S−i,−f(t1)f1(t1)dWi1(t1) +

1
2
1{i1=i2≠0}

×

 t

0
S−(−i),−(−f)(t2)f2(t2)f1(t2)dt2.

Proof. See Section 2.4 of Li and Chen (2016). �

For example, to calculate (46), we employ the following blocks
to convert (36) to a linear combination of iterated Itô combination
of iterated Itô integrals

S(0,1),(1,1)(t) = I(0,1),(1,1)(t), (C.4a)

S(1,0),(1,1)(t) = I(1,0),(1,1)(t), (C.4b)

S(1,1),(1,1)(t) = I(1,1),(1,1)(t) +
1
2
I(0),(1)(t), (C.4c)

S(1),(J(t))(t) = I(1),(J(t))(t). (C.4d)

Similarly, to calculate (47b), the following conversion is needed
among others:

S(1,1),(J(t),J(t))(t) = I(1,1),(J(t),J(t))(t) +
1
2
I(0),(J(t)2)(t). (C.5)

C.3. Conditional expectation of iterated Itô integrals

Following the previous discussions, we finally focus on
the conditional expectation of iterated Itô integrals in the
following form: En

Ii,f(∆)|W (∆) = w


, where En(·) denotes

the conditional expectation operator E (·|N(∆) = n, J(∆)) for
simplicity. A natural start is to remove the conditioning by an
explicit construction of Brownian bridge (see, e.g., Section 5.6
in Karatzas and Shreve (1991)), i.e., for any r = 1, 2, . . . , d,

(Wr(s)|W (∆) = w)
in law
= (Wr(s)|Wr(∆) = wr)

in law
= Bw

r (s)

:= Br(s) −
s
∆

Br(∆) +
s
∆

wr ,

where Br ’s are independent Brownian motions and

Bw
r (s) := Br(s) −

s
∆

Br(∆) +
s
∆

wr (C.6)

is distributed as a Brownian bridge starting from 0 and ending at
wr at time∆.We assumeBw

0 (s) ≡ s andB0(s) ≡ s. Thus, it follows
that

En

Ii,f(∆)|W (∆) = w


= E

 ∆

0

 t1

0
· · · tl−1

0
fl(tl)dBw

il (tl) · · · f2(t2)dBw
i2 (t2)f1(t1)dB

w
i1 (t1)


. (C.7)

To articulate some useful tools, we introduce an important type
of iterated Itô integral as follows. For an index i = (i1, i2, . . . , il)
with an ascending order 0 ≤ i1 ≤ i2 ≤ · · · ≤ il ≤ d and an
integrand f = {(f1(t), f2(t), . . . , fl(t))}, denote by

Iνi,f(t) :=

 t

0

 t1

0
· · ·

 tl−1

0
fl(tl)dBil(tl) · · ·

f2(t2)dBi2(t2)f1(t1)dBi1(t1), (C.8)

where νi= (ν0, ν1, ν2 . . . , νd) is a vector with

νj := #{k = 1, 2, . . . , l : ik = j}, for j = 0, 1, . . . , d, (C.9)

i.e., the total number of k from the set {1, 2, . . . , l} such that ik = j.
It is obvious that

d
j=0 νj = l.

Proposition 1. The expectation (C.7) admits the following represen-
tation

En

Ii,f(∆)|W (∆) = w


=

ν1
p1=0


ν1

p1

w1

∆

p1 ν1−p1
q1=0


ν1 − p1

q1


−

1
∆

ν1−p1−q1

×

ν2
p2=0


ν2

p2

w2

∆

p2 ν2−p2
q2=0


ν2 − p2

q2


−

1
∆

ν2−p2−q2

× · · · ×

νd
pd=0


νd

pd

wd

∆

pd νd−pd
qd=0


νd − pd

qd


−

1
∆

νd−pd−qd

× En


d

j=1

B
νj−pj−qj
j (∆) × I(q0,q1,q2,...,qd),f(∆)


(C.10)

where q0 = l −
d

k=1 qk.

Proof. See Section 2.5 of Li and Chen (2016). �

To illustrate for Proposition 1, we employ the following
two conditional expectations for calculating (46) based on
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(C.4a)–(C.4d):

E1

I(0,1),(1,1)(∆)|W (∆) = w


= −

1
∆

E1

B (∆) × I(2,0),(1,1)(∆)


+ E1


I(1,1),(1,1)(∆)


+

w

∆
E1

I(2,0),(1,1)(∆)


, (C.11a)

E1

I(1),(J(t))(∆)|W (∆) = w


= −

1
∆

E1

B (∆) × I(1,0),(J(t))(∆)


+ E1


I(0,1),(J(t))(∆)


+

w

∆
E1

I(1,0),(J(t))(∆)


, (C.11b)

as well as an example for calculating (47b) based on (C.5):

E2

I(1,1),(J(t),J(t))(∆)|W (∆) = w


=

1
∆2

E2

B2 (∆) × I(2,0),f(∆)


−

2
∆

E2

B (∆) × I(1,1),f(∆)


−

2w
∆2

E2

B (∆) × I(2,0),f(∆)


+ E2


I(0,2),f(∆)


+

2w
∆

E2

I(1,1),f(∆)


+

w

∆

2
E2

I(2,0),f(∆)


, (C.12)

where f = {(J (t) , J (t))}.
Next, it suffices to calculate the expectation in (C.10). We

propose the following iteration-based algorithm.

Proposition 2. For non-negative integers k1, k2, . . . , kd = 0, 1, 2,
. . . , νi= (ν0, ν1, ν2 . . . , νd) and f = {(f1(t), f2(t), . . . , fl(t))}, if
there exists i ∈ {1, 2, . . . , d} such that νi > ki, we have

En


d

j=1

B
kj
j (∆) × Iνi,f(∆)


= 0; (C.13)

if there exists i ∈ {1, 2, . . . , d} such that νi ≤ ki, we have

En


d

j=1

B
kj
j (∆) × Iνi,f(∆)



= νi × En


B

ki−1
i (∆)

d
j=1,j≠i

B
kj
j (∆)

× I(ν0+1,ν1,...,νi−1,νi−1,νi+1,...,νd),f(∆)


+

l+1
j=1

En


B

ki−1
i (∆)

d
q=1,q≠i

B
kq
q (∆)

× I(ν0,ν1,...,νi−1,νi+1,νi+1,...,νd),(f1,f2,...,fj−1,1,fj,...,fl)(∆)


; (C.14)

in particular, if νi = ki, we have

En


d

j=1

B
kj
j (∆) × Iνi,f(∆)



= ki! × En


d

j=1,j≠i

B
kj
j (∆) × I(ν0+νi,ν1,...,νi−1,0,νi+1,...,νd),f(∆)


.

(C.15)

Proof. See Section 2.6 of Li and Chen (2016). �
Following (C.11a) and (C.11b), we illustrate Proposition 2 using
the following examples among others:

E1

B (∆) × I(2,0),(1,1)(∆)


= 3E1


I(2,1),(1,1,1)(∆)


= 0,

E1

B (∆) × I(1,0),(J(t))(∆)


= E1


I(1,1),(1,J(t))(∆)


+ E1


I(1,1),(J(t),1)(∆)


= 0,

E1

I(2,0),(1,1)(∆)


=

 ∆

0

 t1

0
dt2dt1 =

1
2
∆2

E1

I(1,0),(J(t))(∆)


=

 ∆

0
J (t1) dt1 =

 ∆

0
Z11[τ1,∆](t1)dt1

= Z1 (∆ − τ1) .

Similarly, following (C.12), we provide the following example:

E2

B2 (∆) × I(2,0),(J(t),J(t))(∆)


= E2


B (∆) × I(2,1),(1,J(t),J(t))(∆)


+ E2


B (∆) × I(2,1),(J(t),1,J(t))(∆)


+ E2


B (∆) × I(2,1),(J(t),J(t),1)(∆)


,

where, for instance,

E2

B (∆) × I(2,1),(J(t),1,J(t))(∆)


=

 ∆

0

 t1

0

 t2

0
J(t3)dt3dt2J(t1)dt1

= −
1
6
Z2
1 (τ1 − τ2)

3
−

1
2
Z1(Z1 + Z2)(T − τ1)(T − τ2) (τ1 − τ2)

+
1
6

(Z1 + Z2)2 (∆ − τ2)
3 .

C.4. Summary of the algorithm

Before closing this section, we summarize the aforementioned
three-stage algorithm as follows:

Algorithm 1. • Convert the multiplications of iterated
Stratonovich integrals to linear combinations.

• Convert each iterated Stratonovich integral resulting from the
previous step into a linear combination of iterated Itô integrals.

• Compute conditional expectation of iterated Itô integrals.

According to the above discussions in this section, conditional
expectation (40) can be calculated as a polynomial in w with
coefficients involving polynomials in the jump arrival times
τ1, τ2, . . . , τn as well as jump sizes Z1, Z2, . . . , Zn. For example,
conditional expectation (46) admits the following closed-form

P1,(1,(1),(1))(w) =
1
2
b(1)(x0)σ (x0)∆w +

1
2
b(x0)σ (1)(x0)∆w

+
1
2
b(x0)b(1)(x0)∆2

− b(1)(x0)τ1Z1

+ b(1)(x0)∆Z1 +
1
2
σ(x0)σ (1)(x0)w2

+ σ (1)(x0)Z1w −
1
∆

σ (1)(x0)τ1Z1w.

Appendix D. Calculation of (42)

Following the investigation from the previous section, it is
evident that (43) can be calculated as a product of the normal
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p.d.f. φΣ(x0)(z) and a polynomial in z with coefficients involving
polynomials in the jumparrival times τ1, τ2, . . . , τn aswell as jump
sizes Z1, Z2, . . . , Zn. For example, (45) admits the following explicit
form

F1,(1,(1),(1))(z)

= φ(z)

1
2
b(1)(x0)σ (x0)∆3/2

+
1
2
b(x0)σ (1)(x0)∆3/2

−
1
2
b(1)(x0)σ (x0)∆3/2z2 −

1
2
b(x0)σ (1)(x0)∆3/2z2

+ b(1)(x0)τ1Z1z −
1
2
b(x0)b(1)(x0)∆2z − b(1)(x0)∆Z1z

−
1
2
σ(x0)σ (1)(x0)∆z3 − σ (1)(x0)

√
∆Z1z2

+ σ(x0)σ (1)(x0)∆z + σ (1)(x0)
√

∆Z1

+
σ (1)(x0)τ1Z1z2

√
∆

−
σ (1)(x0)τ1Z1

√
∆


. (D.1)

To obtain correction term (42) under any arbitrary specifica-
tions of jump-size distribution, we need to consider the following
type of expectation

E
 n

i=1

τ
ai
i

d
l=1

n
k=1

Zbk,l
k,l

×φΣ(x0)


y −

D(x0)
√

∆
(b(x0)∆ + J(∆))


|N(∆) = n


, (D.2)

where ai and bk,l are all non-negative integers for i, k = 1, 2, . . . , n
and l = 1, 2, . . . , d; φΣ(x0) is the p.d.f. of a normal distribution
with zero mean and covariance matrix Σ (x0) defined in (26). By
the independence between (τ1, τ2, . . . , τn) and (Z1, Z2, . . . , Zn),
the calculation of (D.2) boils down to calculating expectations of
monomial of jump arrival times as well as expectations involving
jump sizes in the following form, i.e., (D.2) equals to

E


n

i=1

τ
ai
i |N(∆) = n



×E


d

l=1

n
k=1

Zbk,l
k,l φΣ(x0) (A + BJ(∆)) |N(∆) = n


,

where A and B are defined in (A.3).

D.1. Expectation of monomial of jump arrival times

We note that the conditional distribution of arrival times
follows an order statistics associatedwith a sample of independent
uniformly distributed random variables (see, e.g., Chapter 13
in Karlin and Taylor (1981)),i.e.,

P


n

i=1

{τi = ti}|N(∆) = n



=
n!
∆n

1{0 ≤ t1 ≤ · · · ≤ tn ≤ ∆}dt1dt2 · · · dtn, (D.3)

Thus, we provide a general formula for the conditional expectation
of a monomial of jump arrival times τ

p1
i1

τ
p2
i2

· · · τ
pr
ir in the following

lemma, which follows directly from classical calculus.
Lemma 5. For r ≤ n and 1 ≤ i1 < i2 < · · · < ir ≤ n, we have:

E

τ
p1
i1

τ
p2
i2

· · · τ
pr
ir |N(∆) = n


=


P

k=1

(n + k)

−1

×

r
k=2

pk
h=1


ik − 1 + h +

k−1
j=1

pj


×

p1
h=1

(i1 − 1 + h) ∆P ,

where P =
r

j=1 pj.

D.2. Expectation involving jump sizes

In this section, we resort to the technique of conditioning in the
calculation of

E


d

l=1

n
k=1

Zbk,l
k,l φΣ(x0) (A + BJ(∆)) |N(∆) = n


. (D.4)

For example, by conditioning on J(∆), expectation (D.4) is equal to

E

φΣ(x0) (A + BJ(∆))

×E
 d

l=1

n
k=1

Zbk,l
k,l |J(∆),N(∆) = n


|N(∆) = n


. (D.5)

To calculate the inside conditional expectation, we note that, for
each l,

E


d

l=1

n
k=1

Zbk,l
k,l |J(∆),N(∆) = n



=

d
l=1

E


n

k=1

Zbk,l
k,l |Jl(∆),N(∆) = n


, (D.6)

where Jl(∆) =
N(∆)

i=1 Zi,l. The conditional distribution (Z1,l,
Z2,l, . . . , Zn,l|Jl(∆),N(∆) = n) can be explicitly calculated under
the assumptions of Jump-Size Distributions 1 and 2. For other
specifications of jump-size distribution, case-by-case analysis on
how conditioning techniques can be applied in the calculation of
(D.4) is needed. In Sections 3 and 4 of Li and Chen (2016), as
illustrations, we document the main technical details on handling
a correlated multivariate normal distribution and a correlated
mixture of normal and exponential distributions for modeling
jumps in Model 5 (the CEV-SVCJ model).

D.2.1. An example under Jump-Size Distribution 1
Under Jump-Size Distribution 1, we have
Z1,l, Z2,l, . . . , Zn,l


|Jl(∆),N(∆) = n


in law
=


N

Jl(∆)

n
1n, β

2
l


In −

1
n
1n1⊤

n


|Jl(∆),N(∆) = n


,

(D.7)

where In = diag{1, 1, . . . , 1} and 1n = (1, 1, . . . , 1)⊤. Thus, it is
straightforward to obtain the expectation in (D.6) in closed-form
as a polynomial of Jl(∆) by differentiating the moment generating
function of conditional distribution (D.7), that is,

E


n

k=1

Zbk,l
k,l |Jl(∆),N(∆) = n



=
∂(b1,l)∂(b2,l) · · · ∂(bn,l)

∂θ
b1,l
1 ∂θ

b2,l
2 · · · ∂θ

bn,l
n

ϕ (θ1, θ2, . . . , θn) |θ1,θ2,...,θn=0,
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where

ϕ (θ1, θ2, . . . , θn) = exp


J (n)l (∆)

n

n
i=1

θi

+
1
2
β2
l

 n
i=1

θ2
i −

1
n


n

i=1

θi

2


with J (n)l (∆) =
n

i=1 Zi,l. Thus, expectation (D.4) can be further
calculated in closed-form using Lemma 1.

D.2.2. An example under Jump-Size Distribution 2
Under Jump-Size Distribution 2, it is known from Section 13.1

of Karlin and Taylor (1981) that
Z1,l, Z2,l, . . . , Zn−1,l, Zn,l|Jl(∆),N(∆) = n


in law
= (U1,lJ

(n)
l (∆),U2,lJ

(n)
l (∆), . . . ,Un−1,lJ

(n)
l (∆),Un,lJ

(n)
l (∆)),

where U1,l +U2,l +· · ·+Un−1,l +Un,l = 1 and U1,l,U2,l, . . . ,Un−1,l
are uniformly distributed over the region

Un−1 :=


(u1, u2, . . . , un−1) : ui ≥ 0, for i = 1, 2, . . . , n − 1,

and
n−1
i=1

ui ≤ 1

,

i.e., the distribution of

U1,l,U2,l, . . . ,Un−1,l


has a probability

density function as

P

U1,l ∈ du1,U2,l ∈ du2, . . . ,Un−1,l ∈ dun−1


= (n − 1)!1{(u1,u2,...,un−1)∈Un−1}; (D.8)

moreover, the random vector

U1,l,U2,l, . . . ,Un−1,l


is indepen-

dent of Jl(∆).
Thus, we find that

E


n

k=1

Zbk,l
k,l |Jl(∆),N(∆) = n



= J (n)l (∆)

n
k=1

bk,l
E


n

k=1

Ubk,l
k,l |Jl(∆),N(∆) = n



= J (n)l (∆)

n
k=1

bk,l
E


n

k=1

Ubk,l
k,l |N(∆) = n


,

which simplifies (D.4) to

E

φΣ(x0) (A + BJ(∆))

d
l=1

Jl(∆)

n
k=1

bk,l
|N(∆) = n


×

d
l=1

E


n

k=1

Ubk,l
k,l |N(∆) = n


. (D.9)

By letting nl =
n

k=1 bk,l for l = 1, 2, . . . , d, it is easy to ob-
tain the first conditional expectation in (D.9) in closed-form using
Lemma 2. Through straightforward calculations relying on distri-
bution (D.8), we obtain that

E


n

k=1

Ubk,l
k,l |N(∆) = n


=

(n − 1)!
n

k=1
bk,l!

n
k=1

bk,l + n − 1


!

.

D.3. An explicit illustration of correction term (42)

As an illustration, we obtain the correction term T1,1 (y) for a
one-dimensional jump–diffusion model by integrating (D.1) using
the aforementioned method:
T1,1 (y)

= −
D (x0)
√

∆


1
2
∆3/2 1 − A2 b(1)(x0)σ (x0) + b(x0)σ (1)(x0)


+ A


σ(x0)σ (1)(x0)∆ −

1
2
b(x0)b(1)(x0)∆2


−

1
2
σ(x0)σ (1)(x0)A3∆


E [φ (A + BJ(∆)) |N(∆) = 1]

−


1

√
∆


1 − A2 σ (1)(x0) +

√
∆Ab(1)(x0)


(E [τ1|N(∆) = 1] − ∆) − 2Ab(1)(x0)
(E [τ1|N(∆) = 1] − ∆) + AB


b(1)(x0)σ (x0)

+ b(x0)σ (1)(x0)

∆3/2

−


1 −

3
2
A2

Bσ(x0)σ (1)(x0)∆

+
1
2
Bb(x0)b(1)(x0)∆2


E [φ (A + BJ(∆)) J (∆) |N(∆) = 1]

+


b(1)(x0) +

2
√

∆
Aσ (1)(x0)


B (E [τ1|N(∆) = 1] − ∆)

−
1
2
∆3/2B2 b(1)(x0)σ (x0) + b(x0)σ (1)(x0)


−

1
2
σ(x0)σ (1)(x0)3AB2∆


× E


φ (A + BJ(∆)) J (∆)2 |N(∆) = 1


+

1
√

∆
B2σ (1)(x0)


(E [τ1|N(∆) = 1] − ∆)

−
1
2
σ(x0)B∆3/2


E

φ (A + BJ(∆)) J (∆)3 |N(∆) = 1


,

with A and B defined in (A.3). Here, the expectation of the jump
arrival time is given by E [τ1|N(∆) = 1] = ∆/2. Under Jump-Size
Distribution 1, the expectations involving jump size components
can be calculated as

E [φ (A + BJ(∆)) |N(∆) = 1] =
1

1 + B2β2
φ


A + Bα
1 + B2β2


,

E [φ (A + BJ(∆)) J (∆) |N(∆) = 1]

=
α − ABβ2
1 + B2β2

3/2 φ


A + Bα
1 + B2β2


,

E

φ (A + BJ(∆)) J (∆)2 |N(∆) = 1


=

α2
+ β2

− 2ABαβ2
+

1 + A2


B2β4

1 + B2β2
5/2 φ


A + Bα
1 + B2β2


,

E

φ (A + BJ(∆)) J (∆)3 |N(∆) = 1


=


α − ABβ2

 
α2

+ (3 − 2ABα) β2
+

3 + A2


B2β4


1 + B2β2

7/2
× φ


A + Bα
1 + B2β2


,

whereα andβ are defined viaα = EZ1 andβ2
=VarZ1 according to

Jump-Size Distribution Jump-Size Distribution 1. Under Jump-Size
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Distribution 2, the expectations involving jump size components
can be calculated as

E [φ (A + BJ(∆)) |N(∆) = 1] =
γ

B
e

Aγ
B +

γ 2

2B2 N

−A ,

E [φ (A + BJ(∆)) J (∆) |N(∆) = 1]

= −
γ

B2
e

Aγ
B +

γ 2

2B2
AN


−A− φ


−A ,

E

φ (A + BJ(∆)) J (∆)2 |N(∆) = 1


=

γ

B3
e

Aγ
B +

γ 2

2B2
A2

+ 1

N

−A−Aφ


−A ,

E

φ (A + BJ(∆)) J (∆)3 |N(∆) = 1


= −

γ

B4
e

Aγ
B +

γ 2

2B2


3
A3

+AN

−A−

A2
+ 2


φ

−A,

whereA = A + γ /B and γ is the intensity parameter of the expo-
nential distribution. Here, N (·) denotes the cumulative distribu-
tion function of a standard normal distribution.
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