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Abstract User comments, as a large group of online short texts, are becoming increasingly
prevalent with the development of online communications. These short texts are character-
ized by their co-occurrences with usually lengthier normal documents. For example, there
could be multiple user comments following one news article, or multiple reader reviews
following one blog post. The co-occurring structure inherent in such text corpora is impor-
tant for efficient learning of topics, but is rarely captured by conventional topic models. To
capture such structure, we propose a topic model for co-occurring documents, referred to
as COTM. In COTM, we assume there are two sets of topics: formal topics and informal
topics, where formal topics can appear in both normal documents and short texts whereas
informal topics can only appear in short texts. Each normal document has a probability
distribution over a set of formal topics; each short text is composed of two topics, one
from the set of formal topics, whose selection is governed by the topic probabilities of the

� Feifei Wang
wangff@pku.edu.cn

Yang Yang
yyang1988@pku.edu.cn

Junni Zhang
zjn@gsm.pku.edu.cn

Jin Xu
jxu@pku.edu.cn

Philip S. Yu
psyu@cs.uic.edu

1 School of Electrical Engineering and Computer Science, Peking University, Beijing, China

2 School of Statistics, Renmin University of China, Beijing, China

3 Guanghua School of Management, Peking University, Beijing, China

4 Department of Computer Science, University of Illinois at Chicago, Chicago, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-017-0467-8&domain=pdf
http://orcid.org/0000-0001-8260-2053
mailto:wangff@pku.edu.cn
mailto:yyang1988@pku.edu.cn
mailto:zjn@gsm.pku.edu.cn
mailto:jxu@pku.edu.cn
mailto:psyu@cs.uic.edu


488 World Wide Web (2018) 21:487–513

corresponding normal document, and the other from a set of informal topics. We also
develop an online algorithm for COTM to deal with large scale corpus. Extensive experi-
ments on real-world datasets demonstrate that COTM and its online algorithm outperform
state-of-art methods by discovering more prominent, coherent and comprehensive topics.

Keywords Co-occurring structure · Online algorithm · Short texts · Topic model

1 Introduction

With more online service providers encouraging users to make comments or leave feed-
backs to their real-time updated contents, co-occurring normal documents and short texts
are constantly generated throughout the Internet. For example, each news article in news
publishing platforms could be followed by multiple reader comments, each blog post in
blog websites could be followed by multiple reader reviews, and each product description in
electronic commerce websites could be followed by multiple consumer reviews. The short
texts may discuss issues addressed in their corresponding normal documents, and may also
discuss other issues, such as personal opinions. The co-occurring structure inherent in such
text corpora poses challenges to conventional topic modeling.

Topic models [2, 9] have been successfully applied to modeling normal documents, such
as news articles, blog posts and product descriptions, and have achieved great success in
uncovering latent semantic structure. In the basic Latent Dirichlet Allocation (LDA) model
[2], documents are taken as mixtures of topics and each topic has a probability distribution
over a dictionary of words. It has also been extended in various ways to deal with more
complicated modeling tasks. For example, Liu et al. [15] propose a model that jointly mod-
els the generation of contents and friendships of authors in social networks, within which
the user topics and the link formation pattern can be learned in an unified model. McCallum
et al. [17] propose a model to simultaneously discover groups among the entities and top-
ics among the corresponding texts. Nagarajan et al. [21] propose a probabilistic model for
community structures and user contents that can discover coherent communities and topics
at the same time.

When faced with a corpus of short texts, LDA and its extensions suffer from severe data
sparsity problem. Specifically, 1) small word counts in short texts restrict the ability of topic
models to learn how words are related, and hence the learnt topics are less discriminative
than those learnt from normal documents [10]; 2) limited contexts in short texts make it
more difficult for topic models to distinguish ambiguous words [27].

Two major heuristic strategies have been adopted to alleviate this sparsity problem. The
first strategy aggregates short texts into pseudo-documents. It is widely used in social media
but is highly data-dependent. For example, Weng et al. [26] aggregate tweets belonging to
the same user, Hong et al. [10] aggregate tweets containing the same word and Mehrotra et
al. [18] aggregate tweets based on hashtags. Conventional topic models are then applied to
the pseudo-documents to learn more prominent topics from the enriched contexts of aggre-
gated texts. However, auxiliary information such as authorship or hashtag is not always
available in real word applications. Another strategy is to extend topic models by adding
strong assumptions on short texts. Zhao et al. [29] and Lakkaraju et al. [13] assume each
short text is a mixture of unigrams sampled from only one topic. The biterm topic model
(BTM) [5, 27] turns the whole corpus into a biterm set, where a biterm is constructed by any
two distinct words in a short context. BTM then assumes that the two words in any biterm
are drawn independently from a topic, where the topic is sampled from a topic mixture
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over the whole corpus. The self-aggregation topic model [25] assumes each piece of short
text is sampled from unobserved pseudo-documents and automatically aggregates short
texts. Also using the self-aggregation method, Zuo et al. [30] propose a Pseudo-document-
based Topic Model (PTM) for short texts, which can solve the overfitting problem and save
computational cost in [25].

Recently, word embedding models [11, 19, 22] have gained much attention with their
ability to form clusters of conceptually similar words in the embedding space. [11] proposes
a latent concept topic model (LCTM), which models each topic as a distribution over the
latent concepts and each concept is a Gaussian distribution over the word embedding space.
Since the number of concepts is often much smaller than the number of unique words,
LCTM is less susceptible to the data sparsity.

The methods which explore external normal texts to improve topic learning of short
texts are closely related to our work. For example, Phan et al. [23, 24] propose to train
topic models on a collection of long texts which are in the same domain as the short texts,
and then make inference on the short texts to help the learning of their topics. Jin et al.
[12] learned topics on short texts via transferring knowledge from auxiliary long text data.
Performance of these approaches, however, is highly data-dependent, as the quality of topic
learning is highly dependent on the quality of the organization of external datasets. Targeted
on summarization of short texts, Ma et al. [16] utilize the relationships between normal
documents and corresponding short texts to enhance topic learning of short texts. They
propose two models, the Master-Slave Topic Model (MSTM) to restrict topics of short texts
within those of their associated normal documents, and the Extended Master-Slave Topic
Model (ESTM) to allow some short texts to represent topics only extracted from themselves
and not correlated with normal documents. However, both MSTM and EXTM miss the
situation that short texts may not only contain content information from their associated
normal documents and also express their own opinions.

In this paper, we fill this gap and propose a co-occurring topic model COTM, which
can directly exploit the co-occurring structure in the text corpora and utilize information
from both the normal documents and the short texts for efficient topic learning. We assume
(1) each normal document has a probability distribution over a set of formal topics; (2)
each short text has a probability distribution over two topics, one belonging to the formal
topics, whose selection is governed by the topic probabilities of the corresponding normal
document, and the other belonging to a set of informal topics which are shared only by
short texts. Intuitively, for each short text, its formal topic is the one that appeals to its
author from the set of topics for the corresponding normal document, and its informal topic
reflects the additional discussion that its author adds to the chosen formal topic. As a result,
in COTM, topic modeling of normal documents is enhanced by the inclusion of words from
the corresponding short texts that are relevant to the formal topics, and the informal topics
are learnt from words that are irrelevant to formal topics but shared across short texts.

In practice, texts are constantly generated, and online scalable inference algorithms are
needed. For co-occurring text corpora, short texts can be created at any timestamps after
the corresponding normal documents are published. We introduce an online algorithm for
COTM, referred to as oCOTM, to deal with dynamically generated co-occurring documents.
The oCOTM algorithm can incrementally adjust the learned topics according to the dynamic
stream of data, without need to access previously processed texts. Compared with COTM,
the advantage of oCOTM is that it only needs to store a small fraction of data for model
update, saving both computational cost and memory cache.

We conduct extensive experiments on two large real-world text collections, i.e. news arti-
cles together with reader comments from NetEase news website, and blog posts together
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with user comments from Sina blog website. Experiments on both batch and online
algorithms show that (1) COTM learns more coherent and comprehensive topics than sev-
eral state-of-art methods for topic modeling, like LDA, BTM and EXTM; (2) the topic
proportions obtained by COTM can better help document clustering and classification, indi-
cating that COTM offers better topic representations than its competitors. Moreover, COTM
properly reveals topical relationships between normal documents and their ensuing short
texts, which can be effectively used in detecting spam user comments.

This paper extends our previous conference article [28] with the following improve-
ments: 1) we introduce an online algorithm for COTM to handle continuously generated
texts, including both short texts and normal documents. 2) Both batch and online COTM
algorithms are empirically verified with more comprehensive experiments. The rest of this
paper is organized as follows. Sections 2 and 3 present the batch and online implementations
of COTM. Section 4 shows experimental results. Section 5 then concludes.

2 The COTM model

Co-occurring documents, consisting of both normal documents and short texts, are illus-
trated in Figure 1. Borrowing ideas from previous works, we use normal documents as
auxiliary information to help improve the topic learning for short texts. On the other
hand, we also enhance topic learning for normal documents by using information from the
corresponding short texts.

2.1 Model description

We assume the generative process of normal documents follow the LDA model. Assume
that there are K topics underlying D normal documents, which we refer to as formal topics
thereafter. Each normal document d is a mixture of the K formal topics with its own vector
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Figure 1 Hierarchical structure of normal documents and short texts
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of topic probabilities θd = {θd1, θd2, ..., θdK }. Each formal topic k has its own vector of
word probabilities φk = {φk1, φk2, ..., φkV } over a dictionary with size V , which consists
of all distinct words in normal documents and short texts.

Contents in short texts may discuss topics from their corresponding normal documents,
and may also discuss some additional issues, such as adding personal opinions. Hence the
K formal topics are insufficient to cover all subjects discussed in the short text corpus. We
assume there are another set of J informal topics, which appear only in short texts, and each
informal topic j has its own vector of word probabilities ψj = {ψj1, ψj2, ..., ψjV }. For the
cth short text following normal document d, it has a probability distribution (pdc, 1−pdc)

�
over two topics, a formal topic xdc and an informal topic ydc. Here pdc ∈ [0, 1] depicts
the association probability between the short text and the corresponding normal document,
with higher values indicating more consistent relationships.

The graphical representation of normal documents and short texts is illustrated in Figure 2,
and the generative process is described below.

For each normal document d ∈ {1, 2, ..., D}:
1. Generate topic probabilities θd from a homogeneous Dirichlet distribution with param-

eter α: θd ∼ Dir(α);
2. For the nth word in normal document d, n ∈ {1, 2, ..., Nd}:

(a) Choose a topic zdn from the K formal topics with probabilities given by θd : zdn ∼
Multi(θd);

J

ξ

α γ

Figure 2 Graphical representation of COTM
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(b) Choose a word wdn from the dictionary with probabilities given by φzdn
: wdn ∼

Multi(φzdn
).

Then for the cth short text associated with normal document d, c ∈ {1, 2, ..., Cd}:
1. Choose the association probability pdc from a beta distribution with parameter γ :

pdc ∼ Beta(γ, γ );
2. Choose a topic xdc from K formal topics with probabilities given by θd : xdc ∼

Multi(θd);
3. Choose a topic ydc from J informal topics with probabilities given by ξ : ydc ∼

Multi(ξ);
4. For the mth word in the short text, m ∈ {1, 2, ..., Mdc}:

(a) Generate a topic indicator bdcm with probability given by pdc: bdcm ∼
Bernoulli(pdc);

(b) If bdcm = 1, the word is chosen with probabilities under the formal topic: wdcm ∼
Multi(φxdcm

).
(c) If bdcm = 0, the word is chosen with probabilities under the informal topic:

wdcm ∼ Multi(ψydcm
);

To complete the specification, we assign homogeneous Dirichlet hyperpriors for φk , ψj

and ξ , i.e.: φk ∼ Dir(β), ψj ∼ Dir(β), ξ ∼ Dir(ε).
Here we make a few comments about the model specification. Firstly, unlike normal

documents, each of which has its own topic probabilities θd over the formal topics, we
assume all short texts share the same topic probabilities ξ over the informal topics. This
assumption makes the model simpler and thus easier to converge than assuming different
topic probabilities for each short text. Secondly, noting that short texts are very concise,
we assume each short text only represents two topics, a formal one and an informal one.
This assumption also helps to simplify our model setting. Lastly, by using pdc to depict the
topical relationships between short texts and normal documents, we obtain an unsupervised
way to detect “spams”, i.e. the short texts whose pdc are smaller than a predefined threshold
can be identified as “spams”.

To our best knowledge, models utilizing the co-occurring relationships between normal
documents and short texts to enhance topic learning are still rarely seen in the literature,
except for the MSTM and EXTM models proposed by Ma et al. [16]. While both COTM
and the models in [16] employ the co-occurring structure in text corpus, there still exists
many differences between these two methods:

– Firstly, both MSTM and EXTM allow each short text to have only one topic, which
is either derived from the topic distribution of its associated normal document or is
one of the extended topics formed by all short texts. However, this assumption for
short texts is still rigid because these two circumstances may coexist on one short text.
Following a normal document discussing various topics, the corresponding short texts
often concentrate on one specific topic (the formal one) and add additional personal
opinions (the informal one). Thus, in COTM, we assume each short text is composed
of two topics, a formal one derived from the normal documents and the informal one
formed only by short texts. This assumption is much closer to the generative process of
short texts in real world. In addition, a probability distribution is assumed over the two
topics, indicating the correlation relationship between the short text and its associated
normal document. Therefore, the topics of short texts are under different level of topical
consistence with normal documents, from strongly correlated, partially correlated to
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completely irrelevant. In this respect, COTM can be seen as a more general extension
of EXTM.

– Secondly, in MSTM and EXTM, the same topic meaning is represented by two set of
topics, the master topics, which use vocabulary formed by normal documents, and the
slave topics, which use vocabulary formed by short texts. On the contrary, both formal
and informal topics have word distributions over the whole vocabulary, which includes
all unique words in normal documents and short texts. This more concise assumption
for vocabulary can not only significantly reduce the parameter space and computa-
tional complexity under a big text corpus, but also integrate the generation of topics
in an unified framework and make the artificial summarization of topic meanings eas-
ier. Moreover, under this assumption, the topic learning of normal documents can be
enhanced by the inclusion of words from the corresponding short texts.

2.2 Model inference

In this section, we introduce the Gibbs sampling algorithm for COTM. For normal
documents, let zd = (zd1, zd2, ..., zdNd

)� and z = {z1, z2, ..., zD}. For all the Cd

short texts associated with normal document d, let bdc = (bdc1, bdc2, ..., bdcMdc
)�,

bd = {bd1, bd2, ..., bdCd
}, Pd = {pd1, pd2, ..., pdCd

}, xd = (xd1, xd2, ..., xdCd
)� and

yd = (yd1, yd2, ..., ydCd
)�. Then we have b = {b1, b2, ..., bD}, P = {P1, P2, ..., PD},

x = {x1, x2, ..., xD}, and y = {y1, y2, ..., yD} for all short texts. Moreover, let � =
{θ1, θ2, ..., θD}, � = {φ1,φ2, ..., φK } and � = {ψ1, ψ2, ..., ψK }. Let w represent all words
in normal documents and short texts. Given w and all the hyperparameters, we can derive
the full posterior distribution according to the generative process of COTM:

f (z, b,P , x, y,�, �, �, ξ | w, α, β, γ, ε)

∝
{

D∏
d=1

K∏
k=1

θα−1
dk

}{
K∏

k=1

V∏
v=1

φ
β−1
kv

}{
J∏

j=1
ξε−1
j

}{
J∏

j=1

V∏
v=1

ψ
β−1
jv

}
{

D∏
d=1

Cd∏
c=1

p
γ−1
dc (1 − pdc)

γ−1

}{
D∏

d=1

Nd∏
n=1

θd,zdn
φzdn,wdn

}
{

D∏
d=1

Cd∏
c=1

θd,xdc
ξydc

} {
D∏

d=1

Cd∏
c=1

Mdc∏
m=1

(
pdcφxdc,wdcm

)bdcm

}
{

D∏
d=1

Cd∏
c=1

Mdc∏
m=1

[
(1 − pdc)ψydc,wdcm

]1−bdcm

}
.

(1)

Given the full posterior distribution in (1), we can easily get the full conditional poste-
rior distributions for �, �, �, ξ and P , which are all Dirichlet and conjugate with their
priors. Therefore, we develop a collapsed Gibbs sampling algorithm by integrating out
these parameters from the posterior distribution, and only need to update z, x, y and b in
each iteration. Details of deriving the collapsed Gibbs sampling algorithm can be seen in
Appendix.

For the nth word in normal document d, the full conditional distribution of zdn in the
collapsed Gibbs sampling algorithm is:

f (zdn = k | ·) ∝
(
l
(1)
dk;−dn

+ g
(1)
dk + α

) l
(2)
k,wdn;−dn

+ g
(2)
k,wdn

+ β

l
(2)
k·;−dn

+ g
(2)
k· + Vβ

, (2)

where the subscript “−dn” indicates counts excluding the nth word in normal document d,
l
(1)
dk and g

(1)
dk denote the number of words in normal document d or the number of short texts
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following normal document d that are associated with formal topic k, l
(2)
kv and g

(2)
kv denote

the number of times word v is associated with formal topic k in all normal documents and
short texts, l(2)k· and g

(2)
k· are the sum of l

(2)
kv and g

(2)
kv over all words v in the vocabulary.

For xdc and ydc in the cth short text associated with normal document d, their full
conditional distributions in the collapsed Gibbs sampling algorithm are:

f (xdc = k | ·) ∝
(
l
(1)
dk +g

(1)
dk;−dc

+α
) ∏

v∈
dc

∏q
(1)
dcv

m=1

(
l
(2)
kv + g

(2)
kv;−dc

+ m−1+ β
)

∏s
(1)
dc

m=1

(
l
(2)
k· + g

(2)
k·;−dc

+ m −1+Vβ
) , (3)

f (ydc = j | ·) ∝ (
hj ;−dc + ε

) ∏
v∈
dc

∏q
(2)
dcv

m=1

(
g

(3)
jv;−dc

+ m − 1 + β
)

∏s
(2)
dc

m=1

(
g

(3)
j ·;−dc

+ m − 1 + Vβ
) , (4)

where the subscript “−dc” indicates counts excluding the cth short text following normal
document d, 
dc is the set of unique words appearing in the cth short text following normal
document d, q(1)

dcv and q
(2)
dcv denote the the number of times word v appears in the cth short

text following normal document d and are associated with formal topics or informal topics
respectively, hj denotes the number of short texts that are associated with informal topic

j , g(3)
jv denotes the number of times word v is associated with informal topic j in all short

texts, s(1)
dc and s

(2)
dc are summation of q

(1)
dcv and q

(2)
dcv over all unique words in 
dc.

For the mth word in the cth short text following normal document d, the full conditional
distribution of bdcm in the collapsed Gibbs sampling algorithm is:

f (bdcm = 1 | ·) ∝ l
(2)
xdc,wdcm

+ g
(2)
xdc,wdcm;−dcm

+ β

l
(2)
xdc,· + g

(2)
xdc,·;−dcm

+ Vβ

(
s
(1)
dc;−dcm

+ γ
)

, (5)

f (bdcm = 0 | ·) ∝ g
(3)
ydc,wdcm;−dcm

+ β

g
(3)
ydc,·;−dcm

+ Vβ

(
s
(2)
dc;−dcm

+ γ
)

, (6)

where the subscript “−dcm” indicates counts excluding the mth word in the cth short text
following normal document d, g

(3)
ydc,· is the sum of g

(3)
ydc,v over all words in the dictionary.

Equations (5) and (6) are then normalized to sum up to one to get the full conditional
posterior probabilities for bdcm = 1 and bdcm = 0.

We can compute �, �, � and P using the first posterior draw of z, x, y and b after
convergence of the collapsed Gibbs sampling algorithm.

θ̂dk = l
(1)
dk + g

(1)
dk + α

l
(1)
d· + g

(1)
d· + Kα

, (7)

φ̂kv = l
(2)
kv + g

(2)
kv + β

l
(2)
k· + g

(2)
k· + Vβ

, (8)

ψ̂jv = g
(3)
jv + β

g
(3)
j · + Vβ

, (9)

p̂dc = s
(1)
dc + γ

s
(1)
dc + s

(2)
dc + 2γ

. (10)



World Wide Web (2018) 21:487–513 495

Table 1 Time complexity and the number of in-memory variables in LDA and COTM

Time complexity The number of in-memory variables

LDA O(NiterD(K + J )(N̄ + C̄M̄)) D(K + J )(1 + C̄) + V (K + J ) + D(N̄ + C̄M̄)

COTM O(NiterD(KN̄ + C̄(K + J + 2M̄))) DK + V (K + J ) + D(N̄ + C̄(4 + M̄))

2.3 Model complexity

To illustrate the computational complexity of COTM, we show its running time and memory
requirements and make comparison with the basic LDA model. We denote by C̄ the average
number of short texts following each normal document, N̄ the average length (number of
words) of normal documents, M̄ the average length of short texts, and Niter the number of
iterations in Gibbs sampling. For simplicity of calculations, we further assume each normal
document has the same number of short texts C̄, each normal document has the same length
N̄ , and each short text has the same length M̄ . To ensure fair comparison with the same set
of texts and the same number of topics, we compare COTM with the LDA model trained
by Gibbs sampling1 to both normal documents and short texts with K + J topics. The time
complexity and number of in-memory variables in the Gibbs sampling procedure of the two
models are listed in Table 1.

For LDA, the assignment of each topic requires computational time in the order
O(K + J ). LDA draws a topic for each word in the text corpus, with an overall time
complexity O(NiterD(K + J )(N̄ + C̄M̄)). For COTM, there are three sampling steps. In
the first step, COTM draws a topic for each word in normal documents, which requires
computational time in the order O(NiterDKN̄). The second step involves drawing a for-
mal topic and an informal topic for each short text, which requires computational time in
the order O(NiterDC̄(K + J )). In the final step, COTM draws the binary topic indica-
tor bdcm for each word in the short texts, which requires computational time in the order
O(NiterDC̄2M̄). Therefore, the overall time complexity of COTM is O(NiterD(KN̄ +
C̄(K + J + 2M̄))). The difference in the order of computational complexity between
LDA and COTM is O(Niter (DJ N̄ + DC̄{(K + J )M̄ − (K + J ) − 2M̄})). Noting
K + J + 2M̄ � (K + J )M̄ , the time complexity of COTM has smaller order than that of
LDA.

In the two models, count matrices and topic assignments need to be kept in memory. In
LDA, the variables that need to be stored are: the count matrix for the number of words in
each normal document or short text that are associated with each topic, the count matrix for
the number of times that each word in the dictionary is associated with each topic, and the
topic assignment for each word in the corpus. Hence the overall required memory size is
D(K + J )(1 + C̄) + V (K + J ) + D(N̄ + C̄M̄). In COTM, the count matrices l

(1)
dk + g

(1)
dk ,

l
(2)
kv + g

(2)
kv , g

(3)
jv , s

(1)
dc and s

(2)
dc need to be stored, taking up memory size DK + V (K +

J ) + 2DC̄. Moreover, the topic assignments z, x, y and b need to be stored, taking up
memory size DN̄ + 2DC̄ + DC̄M̄ . Hence, the overall required memory size for COTM is
DK + V (K + J ) + D(N̄ + C̄(4 + M̄)). The difference in required memory size between
LDA and COTM is D(J + (K + J − 4)C̄), which is usually very large. Thus the required
memory size for COTM is less than that for LDA.

1http://gibbslda.sourceforge.net/

http://gibbslda.sourceforge.net/
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3 Online algorithm for COTM

In real-world applications, normal documents and their co-occurring short texts are con-
stantly generated, which requires topic modeling algorithms to deal with large volume of
data streams. Batch algorithms have high computational and memory cost, and are not effi-
cient. As a result, we introduce an online algorithm for COTM, referred to as oCOTM,
to deal with the online-learning task. Compared with batch COTM, the online algorithm
only needs to store a small amount of data, and topics can be constantly updated over data
streams.

The oCOTM algorithm is inspired by the online LDA algorithm proposed in [1]. It
assumes documents are divided into successive time slices, e.g., each time slice being an
hour or a day. The general idea of oCOTM is to fit a COTM model with K formal top-
ics and J informal topics on normal documents and short texts at each time slice, and
the counts of words in topics (i.e. l

(2)
kv , g

(2)
kv , g

(3)
jv ) at the current time slice would be used

to update parameters in priors for topics’ word probabilities in COTM at the next time
slice.

Let V (t) denote the size of dictionary at time slice t , where the dictionary expands that at
time slice t −1 by the new words appearing in time slice t . Let β(t)

k;for and β
(t)
j ;inf respectively

denote V (t)-dimensional vectors used in Dirichlet priors for formal topic k and informal
topic j at time slice t , where the components corresponding to the new words equal β. The
collapsed Gibbs sampling algorithm in Section 2 is carried out, with β replaced by β

(t)
kv;for

or β
(t)
jv;inf, and the count matrices l

(1)
dk , g

(1)
dk , l

(2)
kv , g

(2)
kv , g

(3)
jv , s

(1)
dc and s

(2)
dc calculated using only

normal documents and short texts at time slice t .
After convergence of the collapsed Gibbs sampling algorithm, the first posterior draw of

z, x, y and b is used to calculate the word counts l
(2)(t)
kv , g(2)(t)

kv and g
(3)(t)
jv . These counts are

used to adjust the prior vectors for the next time slice by setting:

β
(t+1)
kv;for = β

(t)
kv;for + λ

(
l
(2)(t)
kv + g

(2)(t)
kv

)
, (11)

β
(t+1)
jv;inf = β

(t)
jv;inf + λg

(3)(t)
jv , (12)

where λ ∈ [0, 1] is a decay parameter, indicating the strength of influence of historical topic
information. When λ = 1, we simply accumulate the historical counts of topic assignments
without any decay; when λ = 0, the COTM models trained at different time slices are
independent. At the initial time slice, we set all entries in β

(t)
k;for and β

(t)
j ;inf as a constant β.

Then these prior vectors would be updated at the end of each time slice and the historical
information would be involved in model fitting at later time.

We now compare the complexities of batch and online algorithms of COTM. Assume
there are D(t) normal documents in time slice t . Let D(1:t) = D(1) + · · · + D(t) denote the
cumulative number of normal documents up to time t . For simplicity, we further assume all
short texts corresponding to a normal document in time slice t are published in time slice t .
The batch COTM algorithm needs to take account of all normal documents and short texts
up to time t . It would require computational time in the order O(NiterD

(1:t)(KN̄ + C̄(K +
J + 2M̄))), and memory size D(1:t)K + V (t)(K + J ) + D(1:t)(N̄ + C̄(4+ M̄)). The online
COTM algorithm needs only to take account of normal documents and short texts in time
slice t . It would require computational time in the order O(NiterD

(t)(KN̄ + C̄(K + J +
2M̄))), and memory size D(t)K +V (t)(K +J )+D(t)(N̄ + C̄(4+ M̄)). The computational
complexity and memory consumption are compared in Table 2.
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Table 2 Time complexity and the number of in-memory variables of batch and online COTM algorithms in
time slice t

Time complexity The number of in-memory
variables

batch COTM O(NiterD
(1:t)(KN̄ + C̄(K + J + 2M̄))) D(1:t)K + V (t)(K + J )

+D(1:t)(N̄ + C̄(4 + M̄))

oCOTM O(NiterD
(t)(KN̄ + C̄(K + J + 2M̄))) D(t)K + V (t)(K + J )

+D(t)(N̄ + C̄(4 + M̄))

4 Experiments

4.1 Experimental settings

Datasets. The effectiveness of our approach is evaluated over two text datasets with co-
occurring structure.

– NetEase collection includes news articles and reader comments crawled from the
most popular Chinese news publishing platform.2 All the texts crawled are published
between May 1st, 2015 and May 1st, 2016.

– Sina collection includes blog posts and user comments crawled from a famous Chinese
blog platform.3 All the texts crawled are published between Jan 1st, 2016 and May 1st,
2016. Each blog post is assigned to one of eight categories by its author, as illustrated
in Figure 3a.

All the datasets have been made to be public.4 The raw texts are mainly written in Chi-
nese and we take the following preprocessing procedure to obtain clean text corpus. Firstly,
we erase non-Chinese characters, punctuations and convert traditional Chinese characters to
simplified Chinese characters. Secondly, we segment sentences into word sequences using
an open source package NLPIR.5 Finally, we remove stop words, low frequency words
and normal documents followed by no short texts. After preprocessing, the basic statis-
tics of the two datasets are listed in Table 3, including the numbers of normal documents
and short comments, the average lengths of normal documents and short comments, and
the number of unique Chinese words. Figure 3b also illustrates the distribution of counts
of short comments (in logarithm) following normal documents for NetEase data. The dis-
tribution follows power-law and has a heavy tail, indicating that while some news articles
gain great popularity among news readers, most of them are only followed by a few short
comments.

We first evaluate the batch COTM algorithm on a randomly sampled dataset of 10%
normal documents and their corresponding comments in NetEase and Sina collections, since
both of the datasets are too large to be processed efficiently by batch algorithms. Then
the online algorithm of COTM is evaluated over the whole datasets of NetEase and Sina
collections. For the online algorithm, the time periods in the data sets are equally divided

2http://news.163.com/
3http://blog.sina.com.cn/
4https://pan.baidu.com/s/1boVox3p
5https://pypi.python.org/pypi/PyNLPIR/

http://news.163.com/
http://blog.sina.com.cn/
https://pan.baidu.com/s/1boVox3p
https://pypi.python.org/pypi/PyNLPIR/
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(a) (b)

Figure 3 aCategories of Sina blog posts and bDistribution of counts of comments for NetEase news articles

into T = 20 time slices, with each time slice roughly equal to 18 days for the NetEase data
or 6 days for the Sina data.

Baseline methods In COTM, the semantic meanings of normal documents is covered by
the formal topics, and the semantic meanings of short texts is covered by both formal topics
and informal topics. We compare topics learned by COTM with the following state-of-art
baselines.

– LDA-P: the standard LDA model trained by Gibbs sampling and applied to pseudo-
documents obtained by aggregating each normal document with its corresponding short
texts.

– LCTM-P: the LCTMmodel trained by Gibbs sampling and applied to word2vec repre-
sentation [19] of the pseudo-documents obtained by aggregating each normal document
with its corresponding short texts.

– BTM-B: the standard BTMmodel trained by Gibbs sampling and applied to the corpus
including both normal documents and short texts and treating them equally.

– PTM-B: the standard PTM model trained by Gibbs sampling and applied to the corpus
including both normal documents and short texts and treating them equally.

– EXTM: the EXTM model trained by Gibbs sampling and applied to the corpus
including both normal documents and short texts.

The online algorithm of COTM is also compared with online implementations of LDA
[1] and BTM [5], since there are no online versions of the other alternatives:

Table 3 Basic statistics of
NetEase dataset and Sina dataset Dataset NetEase Sina

# of docs (D) 88,420 25,037

Avg. doc len (N̄ ) 359.03 569.65

# of comments 53,555,834 973,120

Avg. comm len (M̄) 6.73 18.58

# of words (V ) 154,729 118,373
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– oLDA-B: the online algorithm of LDA applied to the corpus including both normal
documents and short texts and treating them equally. Here the algorithm uses the counts
of words in topics at the current time slice to update parameters in priors for topics’
word probabilities (β) for the next time slice.

– oLDA-S: the online algorithm of LDA applied to short texts.
– oBTM-S: the online algorithm of BTM6 applied to short texts. Here the algorithm fits

a BTM model in each time slice, and uses the counts of topics in the corpus and the
counts of words in topics at the current time slice to update parameters in priors for the
corpus’ topic probabilities (α) and topics’ word probabilities (β) for the next time slice.

– iBTM-S: the incremental algorithm of BTM applied to short texts. Here the algorithm
updates prior parameters continuously whenever a piece of text arrives.

For the online LDA algorithm, we do not consider aggregating normal documents and their
corresponding short texts into pseudo-documents, because a normal document and its corre-
sponding short texts may not be published in the same time slice. We run online algorithms
of BTM only on short texts, because BTM suffers from expensive computational cost and
memory explosion when applied to normal documents.

To make fair comparisons, all the methods are implemented in C++, including the batch
COTM algorithm7 and the online COTM algorithm.8

The hyperparameters for all baseline models and the online implementations are set to
default values. For COTM, results obtained in various hyperparameter settings show little
difference, and we set α = 0.5, β = 0.1, γ = 0.5 and ε = 0.5 for illustration. In all the
methods, Gibbs sampling is run for 1000 iterations, which is enough for convergence. The
decay weight λ for online methods are all set to be 1.

Measurements Model performance is evaluated in two perspectives: the quality of learned
topics, and the quality of topic representation of documents.

We use coherence score [20] to measure the quality of topics learned by each method.
Given any topic and its top L words V = (v1, v2, ..., vL)� ordered by φk or ψj , the
coherence score is defined as:

CS(V ) = ∑L
l=2

∑l−1
l
′=1

log
F (vl, vl

′ ) + 1

F(v
l
′ )

, (13)

where F(v) is the number of relevant documents including word v, F(v, v
′
) is the number

of relevant documents including both words v and v
′
. The general idea of this metric is that

we believe words belonging to the same topic tend to co-occur within the same document.
Therefore topics with higher coherence scores imply better developed methods. Note that
this definition is consistent with the basic assumption of BTM, i.e., words co-occurring
more frequently should be more possible to belong to the same topic, thus BTM has inherent
advantage under this evaluation metric [5].

To evaluate the quality of topic representation of documents, we investigate how much
the documents’ topic probabilities can help discriminate documents in different clusters
or classes. For LDA and LCTM, document d’s topic proportions θd are used as fea-
tures. For PTM, topic proportions of each document are those of its associated pseudo

6https://github.com/xiaohuiyan/OnlineBTM
7https://github.com/dongxiexidian/hdLDA
8https://github.com/dongxiexidian/ohdLDA

https://github.com/xiaohuiyan/OnlineBTM
https://github.com/dongxiexidian/hdLDA
https://github.com/dongxiexidian/ohdLDA
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document. In BTM, the topic proportions of each document are derived using the topic
indicators z [5, 27]. However, [14, 25] have validated that topic proportions of documents
obtained by using post inference method are critical for downstream applications. In this
context, we do not compare BTM models in document clustering and classification. In
COTM, the formal topic proportions θd are used as features in clustering and classifying
normal documents. For each short text, a (K + J )-dim vector of pseudo topic propor-
tions ˜θdc is created by setting the entry corresponding to the formal topic xdc to pdc,
and the entry corresponding to the informal topic ydc to 1 − pdc, and these topic pro-
portions are then used as features in clustering and classifying short texts. Similar with
COTM, in EXTM, we use the proportions of master topics to classify normal documents
and also transfer the specific topic of each short text into a pseudo vector to classify short
texts.

In document clustering, K-means algorithm is performed under different number of clus-
ters, and the pseudo F index [4], which describes the ratio of between-cluster variance to
within cluster variance, is used to evaluate the performance of clustering.

The pseudo F index is defined as follows. Let || · || denote the Euclidean distance, let
�g denote the set of indices of documents in the gth cluster, and let |�| denote the number
of normal documents in cluster �. For now, let θd denote the general topic proportions
for documents d, including the case of pseudo topic proportions. For the gth cluster, we
denote θ̄g = 1

|�g |
∑

d∈�g
θd as the average topic proportions of documents in this cluster;

we denote θ̄ = 1
D

∑D
d=1 θd as the average topic proportions of all documents. Then the

within-group sum of squares SSW and between-group sum of squares SSG can be derived
as:

SSW = ∑G
g=1

∑
d∈�g

||θd − θ̄g||2, (14)

SSG = ∑D
d=1 ||θd − θ̄ ||2 − SSW, (15)

where G is the number of clusters. Then the pseudo F index is calculated as

pseudo F = SSG/(G − 1)

SSW/(D − G)
. (16)

Larger values of pseudo F index indicate that the clusters are better separated, implying that
the topic representations of documents is of higher quality.

In document classification, we use the SVM classifier LIBLINEAR[8] with 10-fold
cross validation. Methods resulting in better classification accuracy indicate better topic
representations of documents.

4.2 Evaluation of batch COTM

4.2.1 Evaluating formal topics

We first evaluate the quality of learned formal topics, and then perform clustering and clas-
sification of normal documents to evaluate the quality of document representation using
formal topic proportions. Since BTM and PTM are originally proposed to deal with short
texts, here we only compare COTM with models which are designed for modeling normal
documents, such as LDA-P, LCTM-P and EXTM.

Comparison of words under topics In COTM, formal topics are mixtures of words from
both normal documents and short texts. While in LCTM-P, topics are mixtures of concepts
rather than words, we only compare the formal topics learned by COTM with those learned
by LDA-P and EXTM. In the experiment, the numbers of formal (master) and informal
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(extended) topics for COTM (EXTM) are set to be KCOT M = 100 and JCOT M = 50.
To make a fair comparison, we set the number of topics for LDA-P to be 150, since it is
applied to pseudo-documents that include both normal documents and their corresponding
short texts.

We randomly select three topics shared by the three methods to make the comparison.
We follow [3] to proceed this selection. We first create for each method a topic word set
including the top five words with highest probabilities under each topic. We then get the
intersection set of the three topic word sets. Finally, we randomly select three words from
the intersection set. For each selected word, we use the topics whose top five words include
the given word as illustrative examples.

For the Netease data, the three selected words are “airplane”, “cellphone” and “student”.
Table 4 shows topics selected by the word “airplane” for the three methods. In the first
row which lists the top twenty words with highest probabilities under the selected topics,
we find “airplane”, “aviation” and “airport” are among the top words in all three methods.
This indicates that all three topics discuss aviation. However, the top word set of LDA-
P includes words “legitimate” and “France”, which have little to do with aviation. As for
EXTM, its master topic has more irrelevant words, such as “Jackie-Chen”, “France” and
“Germany”, which are names of super stars or countries. Since EXTM uses separate vocab-
ularies for normal documents and short texts, master topics are only represented by words
appearing in normal documents and less influenced by short texts. Results for COTM are
better than those for LDA-P and EXTM, since most of the top words for COTM are closely
related to aviation. Moreover, the formal topic in COTM is enhanced by including words
“China”, “design” and ”aero-engine” from user comments, as the underdeveloped manu-
facturing of “aero-engine” in Chinese aircraft industry has long been a hot issue discussed
among Chinese netizens.

Table 5 shows topics selected by the word “cellphone” for the three methods. The top
twenty words listed in the first row include words “cellphone”, “Apple” and “Mi” (a Chinese
mobile internet company), which indicates that all three topics discuss mobile industry.

Table 4 Topics selected by the word “airplane” in NetEase collection

LDA-P EXTM COTM

airplane airport aviation airplane aviation airport local airplane airport drone voyage

voyage pilot airlines fly passenger voyage G&M aviation China design Hefei

helicopter passenger safety France flight airline Germany aero-engine airlines airliner

flight airliner legitimate airliner design Jackie-Chan passenger flight research

sorties crash G&M fighter departure place pilot crash G&M route Boeing

take-a-seat France captain Shanghai test-flight passenger parachute helicopter

probability approval survivor Norway city landing express Air-Malaysia deafening

drop federalism intercontinental small-town sea economic amount nervous DJI young

celebrate Wuhan black-hawk take-off miles heavy sometimes pull-off traffic-police

fortunately start-up uniform cultural-travel check-in now car worried air kilometer piloting

wonderful circuses USAF trips runaway power equipment meteorological Hongkong life-risk

kilometer publish mentality process usual prohibit propeller freight-transport district

Hollande bleed

The first row lists the top 20 words with highest probabilities, while the second row lists non-top words
ranked from 501 to 520
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Table 5 Topics selected by the word “cellphone” in NetEase collection

LDA-P EXTM COTM

cellphone Apple Mi product cellphone market brand Apple cellphone Apple Mi system

user Samsung software system consumer watch product Mi Samsung Microsoft Green

Microsoft computer Huawei conference Samsung tradition product Huawei computer

company function hardware equipment Huawei screen domestic function software

App watch smart Google convention reveal sales support watch Lenovo Google

equipment usage Android release mobile Android device air-conditioner

patent-fee love dual-cards utilize pick-up open kilometers electronic GPS clamshell-phone

online-banking rely against wear locked inserted promote link desktop LeTV diversification

power-up search-engine landed known executive ghost salute test lifetime amusement

replace account number give-up compete exams rely Nike smuggled-goods workmanship

use-proxy formal recently sectionary cheat school market-share chairman Japan

official contact solely rely famous safety sensor malware

telecommunication

The first row lists the top 20 words with highest probabilities, while the second row lists non-top words
ranked from 501 to 520

When comparing LDA-P and EXTM, we find that the topic learned by LDA-P is more
concentrated on attributes and brands of cellphones. This finding indicates that aggregating
user comments with news articles can enhance topic learning in LDA-P, while using separate
vocabularies for normal documents and short texts would lead to EXTM borrowing less
content information from short texts. The COTM model achieves comparable results with
LDA-P, but also includes words such as “Lenovo” (a Chinese technology company) and
“Green” (a Chinese electric appliances company). Interestingly, Lenovo is a major brand in
the Chinese cellphone market, and Green has recently released two unsuccessful cellphone
models.

From the above two comparisons, we find that the formal topics learned by LDA-P and
COTM outperform those learned by EXTM. This indicates that when most short texts are
topically related to the corresponding normal documents, both LDA-P and COTM are able
to enhance the learning of formal topics by using the whole vocabulary that consists of
normal documents and short texts. However, it is not the same case when most short texts
are topically irrelevant to the normal documents, as demonstrated below.

Table 6 shows topics selected by the word “student” for the three methods. The top
twenty words listed in the first row include words “student”, “school” and “teacher”, which
indicates that all three topics discuss school life. EXTM performs well with only a few less
relevant words, such as “American” and “management”. Results for LDA-P are worse than
those for EXTM, with the top words including names of Chinese cities, provinces or compa-
nies, like “Kunming”, “Suqian”, “Yunnan” and “Zhonghao”. This can be largely attributed
to highly spammed user comments following news articles related to school life. In this
case, only using vocabulary formed by normal documents and modeling spam comments by
extended topics could lead to more prominent master topics in EXTM. The COTM model
not only separates topically relevant contents and spam contents in user comments, but also
enhances the learning of formal topics with relevant information from user comments. As
a result, COTM achieves the best performance, with its top twenty words mostly related to
school life.
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Table 6 Topics selected by the word “student” in NetEase collection

LDA-P EXTM COTM

student teacher school hatred student school teacher computer student teacher school child

Kunming university education student head-teacher college university education headmaster

headmaster child Suqian management guidelines American schoolmate elementary-school

Yunnan schoolmate parent undergraduate campus college parents teach graduation leader

teacher leader high-school parents high score games dormitory undergraduate high-school

Zhonghao undergraduate classrooms head-teacher learn college-entrance-examination

graduation elementary-school exam teacher head-teacher

impression outside-school plan province teach new wall dining-hall complementary PhD

matriculate teacher-and-student everyone midway library hard-work Oxford family grade

lord kick establish accident desks classmates run positive calculate the-whole-school

veteran-cadre business-school facility equipment cellphone agricultural-university Michigan

art-department humiliate guilty habits homework play movie college-entrance PE energy

rain glory name-card agree company multi-level makeup-lesson teaching child

people’s-congress joyful Junior similarly number-of-people

For a high quality topic, its non-top words should be semantically related to its top words
as much as possible. For topics selected by “airplane”, “cellphone” and “student”, the non-
topwordswhose probabilities ranked from 501 to 520 are listed in the second rows of Tables 4, 5
and 6.

In Table 4, the non-top words for COTM are more related to aviation than those for LDA-
P and EXTM. In Table 5, the non-top words for COTM reflect broader issues related to
information technology, and are more relate to cellphones than the non-top words for LDA-
P and EXTM. In Table 6, the superiority of COTM is even more obvious, with most of its
non-top words relevant to school life.

Comparison of clustering and classification performance To evaluate the quality of
topic representation of normal documents, we compare the performance of using topic pro-
portions derived by LDA-P, LCTM-P, EXTM and COTM to cluster normal documents.
Similar to LDA-P, we set the number of topics for LCTM-P to be KLCT M−P = 150 since
it is also applied to pseudo-documents which aggregates normal documents and their cor-
responding short texts. Figure 4a shows the pseudo F values under different number of
clusters for all these methods applied to the NetEase data. We find that LDA-P and LCTM-P
achieve smaller pseudo F values than EXTM and COTM, which indicates that the indis-
criminative inclusion of short comments by using pseudo-documents has weakened topic
representation of normal documents. On the contrary, by separating topically relevant con-
tents from topically irrelevant contents in short texts, COTM and EXTM achieves higher
pseudo F values. Moreover, COTM performs better than EXTM by consistently obtain-
ing prominent formal topics under circumstances that short texts are topically relevant or
irrelevant to their corresponding normal documents.

There are class labels for the normal documents in the Sina dataset, so we use document
classification performance to further compare the topic representation of normal documents
achieved by LDA-P, LCTM-P, EXTM and COTM. In the experiment, the formal (master)
topic numbers for COTM (EXTM) are set to be 100, and the number of informal (extended)
topics vary from 20 to 100 with a step of 20 topics. For LDA-P and LCTM-P, their topic
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(a) (b)

Figure 4 Comparison of COTMwith LDA-P, LCTM-P and EXTM algorithms in a clustering NetEase news
and b classifying Sina blog posts

numbers are set to be the summation of formal topics and informal topics in COTM. Under
each setting, we use topic proportions of normal documents to classify blog posts into 8
categories. From the results shown in Figure 4b, we find both COTM and EXTM show
superiority against LDA-P and LCTM-P, and COTM consistently outperforms EXTM in all
experimental settings.

4.2.2 Evaluating informal topics

To evaluate the quality of informal topics learned by COTM, we make comparisons with
BTM-B and PTM-B, since they are demonstrated to have good performances in modeling
short texts[5, 30]. In the following evaluations, BTM-B, PTM-B and COTM are all applied
to the corpus including both news articles and short comments in the NetEase dataset. The
number of topics in COTM are KCOT M = 100, JCOT M = 50, and those for BTM-B and
PTM-B are set as 150.

Following the same strategy used above, two words “judgement” and “nation” are
selected from the interaction of topic word sets of BTM-B, PTM-B and COTM, and Table 7
shows the top twenty words under the correspondingly selected topics. In the first row of
Table 7, the topics selected by word “judgement” are related to the league matches of China
Basketball Association (CBA). Comparing the informal topic of COTMwith those matched
topics of BTM-B and PTM-B, we find that the topic learned by COTM has discovered more
technical details of basketball playing. This difference can be attributed to the fact that the
informal topics in COTM may have higher probabilities over the words that only appear in
short texts. As a result, the informal topics in COTM tend to reflect more flexible mean-
ings, such as more details of the related issues, or expression of personal opinions. These
characteristics are further validated in the second row of Table 7: topics discovered by the
three methods are all related to international relationships, but the one extracted by COTM
talks more about relations across Taiwan strait, which have long been a hot issue discussed
among Chinese netizens.

For further validation of the characteristics of informal topics discovered by COTM,
Table 8 shows two unique topics only discovered by COTM. The first row represents a
topic of rude talking, and the second row represent a topic of mutual judgements, i.e.,
users making judgements about each other. These two topics can be commonly found in
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Table 7 Topics selected by the words “judgement” and “nation” in the NetEase dataset

BTM-B PTM-B COTM

fans Beijing judgement national Liaoning judgement Beijing foul whistler judgement Marbury

cheer Guangdong game cup club match team club champion Liaoning Hudson Beijing finally

Liaoning team win speak support win goal people playoffs game defend ball fan penalty-shot attack

win-first-place below champion best prospect cup inspiring layup break player final-quarter

people hope foreign-aid manager association first march penalty obvious goal

China USA nation area Russia USA nation China world-wide China USA people nation Japan

world ethnic Japan present area India border Russia union world mainland-China policy

Myanmar people most policy Japan phenomenon center policy present Russia ethnic small

India Asia Kokang center ethnic western controversy small Taiwan human worldwide western

speak South-Korea Western speaker present negotiation awareness India first democracy

Each row lists the top 20 words with highest probabilities under the topics

comments of news articles, as users who hold opposite viewpoints firstly argue with each
other and then the argument could evolve into mutual verbal abuses. However, the corre-
lation coefficients of word probabilities (φ) between these two topics and topics extracted
by BTM-B and PTM-B are extremely low, indicating that these two topics have not been
discovered by the other competitors.

4.2.3 Overall evaluation of topics

After separate evaluations of formal and informal topics, we use an automated metric, coher-
ence score, to evaluate the overall quality of topics learned by COTM. In the experiments,
the coherence score of both formal and informal topics learned by COTM is compared
with the scores of topics learned by LDA-P, BTM-B, PTM-B and EXTM. We do not show
coherence scores for LCTM-P, since the topics extracted by this model are distributions
over concepts, not words. The topic numbers for COTM are set to be KCOT M = 100 and
JCOT M = 20, 40, 80, separately. The numbers of master topics and extended topics in
EXTM are the same with those for COTM. The corresponding topic numbers for LDA-P,
BTM-B and PTM-B are set to be 120, 140, 180 correspondingly. From Table 9, we find that
COTM and PTM-B achieve comparable results, with PTM-B outperforming COTM when
the topic number is larget (180) and COTM achieving slightly better results when the topic
numbers are small (120 and 140). Besides, both PTM-B and COTM consistently outperform
the other three models in all experimental settings.

Table 8 Unique informal topics discovered by COTM from the NetEase dataset

Rude Talking Whole-family die man curse wife die-out generations

be-slaves sister mother eunuch sucks stink widow

unable-to-die-a-natural-death fuck dick ass speak beast

Mutual Judgement Sucks stupid second-floor freaking-awesome first-floor

since-antiquity dog curse upstairs die mother-fucker

funny nice sucker pretentious-bastard talking-big

know support monkey reply
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Table 9 Average coherence scores of topics learned by COTM and its competitors. A larger coherence score
indicates more coherence topics

# All Topics 120 140 180

Data Method Top5 Top10 Top20 Top5 Top10 Top20 Top5 Top10 Top20

NetE LDA-P -9.72 -60.63 -296.07 -9.75 -60.88 -293.93 -9.44 -59.73 -288.06

BTM-B -9.49 -59.49 -302.91 -10.37 -59.20 -318.12 -10.32 -59.04 -312.55

PTM-B -8.96 -55.62 -269.51 -8.81 -54.80 -266.28 -7.53 -50.28 -258.70
EXTM -9.12 -58.13 -285.76 -9.25 -59.14 -290.02 -9.31 -59.27 -289.06

COTM -8.37 -53.78 -268.91 -8.72 -54.30 -270.17 -8.69 -55.41 -272.93

COTM-F -7.93 -45.65 -221.03 -8.01 -47.41 -225.00 -8.87 -50.50 -227.90
COTM-I -8.73 -58.44 -278.17 -9.39 -56.86 -273.29 -9.00 -56.02 -279.67

Sina LDA-P -9.01 -57.65 -280.96 -9.83 -56.95 -290.74 -10.33 -59.36 -298.26

BTM-B -8.66 -53.16 -257.58 -9.83 -55.47 -280.93 -9.42 -53.08 -296.82

PTM-B -8.62 -52.67 -255.97 -9.26 -55.15 -274.90 -8.22 -50.90 -251.47
EXTM -8.65 -52.96 -256.03 -9.57 -55.42 -278.26 -9.13 -54.87 -282.34

COTM -8.59 -52.43 -248.19 -9.27 -54.90 -271.37 -8.91 -54.32 -274.43

COTM-F -7.19 -44.64 -200.37 -7.53 -47.98 -223.15 -7.40 -50.72 -225.21
COTM-I -8.63 -52.90 -251.63 -9.83 -55.38 -272.07 -9.13 -54.63 -278.74

To further explore the quality of formal topics and informal topics learned by COTM, we
calculate the average coherence scores only on formal topics and informal topics respec-
tively, the results of which are defined as COTM-F and COTM-I in Table 9. We find that the
average coherence scores of formal topics are higher than those of informal topics, and even
become the highest in nearly all experimental settings. These findings indicate that COTM
shows strong performances in learning formal topics and poor performances in learning
informal topics, and therefore achieves comparable performances with PTM-B in modeling
both of the normal documents and short texts. This phenomenon validates the basic assump-
tion of COTM that borrowing external information from short texts can help improve the
topic learning of formal topics. As for informal topics, since they are only formed by short
texts which are not much correlated with normal documents, the less amount of content
information results in their poor performance.

(a) distribution of the NetEase news dataset (b) distribution of random sampled news

Figure 5 pdc distribution of NetEase news dataset and random sampled pieces of NetEase news, with
KCOT M = 100 and JCOT M = 20
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4.2.4 Detection of spam short texts

In recent years, detecting spam reviews on the Web has gained great importance. The rel-
evant text corpora often consists of co-occurring normal documents and following short
texts. For instance, products or services are often described by normal textual introductions
on the electronic commerce website, with each product description followed by a number
of short buyers’ reviews. Spam detection can help filter out “untruthful reviews”, “brands
reviews” and “non-reviews” for products or services [7], which are highly concerned by
manufacturers and retailers [6].

Exploring the topical relationships between normal documents and short texts also sheds
light on detecting spams. For example, EXTM uses a switch variableH for each short text to
decide whether it talks about a slave topic or an extended topic. Short texts that are classified
as discussing extended topics can be regarded as spams. However, in real situations such
as buyers’ reviews, short texts may not only talk about slave topics derived from normal
product descriptions, but also include additional personal opinions. In this scenario, using

Table 10 A sampled news article and its corresponding user comments

news article

Daily-Mail report Vietnam Kite Festival year old boy kite rope grab hold kite

drag air figure at-scene boy dragged into air giant kite boy drag sloshing

around finally fall down afterward emergency send hospital rescue boy kite

accident happen moment ChinaNews foreign-media report Vietnam

Ho-Chi-Minh-City days-ago take-place kite-flying result in boy fall dead kite

meters-wide local kite association take-off rope accidentally rapped boy fly-with

into-air finally tragically fall dead belong-to local association trying fly kite

boy suddenly approach staff concentrated fly kite notice currently Vietnam

government investigate original title Vietnam years-old boy accidentally giant

kite take air fall dead

User comments pdc 1 − pdc

Relevant no-matter reason lead child dead tragedy forty 0.97368 0.02632

thumbs-up ruthless maybe lost kinsfolk pain sober

child dreamt kite fly-into-sky 0.90000 0.10000

real tragic boy 0.87500 0.12500

unreal must real high wind blow away fall dead 0.72222 0.27778

read more common sense learned know kite wide 0.53571 0.46429

meters wind power blow away people young child

real fly sky 0.51287 0.48713

Irrelevant Wangfeng should have everyday sing fly higher 0.16667 0.83333

stand by first commenter 0.16667 0.83333

first commenter stupid 0.12500 0.87500

people Shandong province less go abroad cursed 0.10000 0.90000

Mi phone outstanding empty-talk devastated 0.01087 0.98913

all staff hardworking exhausted happiness Chinese

no reason support domestic
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Table 11 Average coherence scores of topics learned by oLDA-B and oCOTM

Number of Topics 120 140 180

Data Method Top5 Top10 Top20 Top5 Top10 Top20 Top5 Top10 Top20

NetE oLDA-B -9.82 -61.54 -298.44 -9.86 -61.74 -295.68 -9.74 -60.22 -290.35

oCOTM -8.54 -56.01 -270.93 -8.63 -55.87 -268.50 -8.06 -51.99 -258.82

Sina oLDA-B -8.96 -55.94 -277.82 -9.12 -55.96 -286.58 -9.30 -57.89 -289.65

oCOTM -8.17 -51.59 -243.38 -8.13 -51.92 -260.36 -8.22 -50.90 -251.47

switch variables to simply classify short texts into two groups is an assumption that is too
strong for modeling the topical meanings of short texts.

In a more natural way, the COTM model uses association probabilities pdc to describe
topical relationships of normal documents and their corresponding short texts. As is shown
in Figure 5, the association probabilities between NetEase news and their following short
reader comments vary a lot between 0 and 1. Figure 5a shows the distribution of pdc for
the entire corpus and we find several obvious peaks within the interval. Figure 5b presents
the pdc distributions of 9 randomly sampled NetEase news and their corresponding reader
comments, which shows different patterns. As a result, we can draw a conclude that short
texts have different topical relationships with their co-occurring normal documents. So we
propose to use pdc in COTM to automatically detect potential spam texts. Specifically, short
texts with pdc less than a certain threshold p̃ are not much semantically related to their
corresponding normal documents, and thus can be classified as irrelevant short texts, which
are often spams.

To illustrate the ability of using pdc to detect spams, the top half of Table 10 shows one
sampled news article reporting an accident that took place in Vietnam, and the second half
shows sampled user comments following the news article. All sampled comments are sorted
by pdc in descending order, and are further classified into relevant and irrelevant comments,
with the threshold being p̃ = 0.2. It can be observed that relevant comments talk about
the original article and express preaches and feelings of sorrow, surprise or ridicule. On
the contrary, irrelevant comments could be random talks, verbal abuses or advertising. This

Table 12 Average coherence score of topics learned by online BTM algoithms and informal topics learned
by oCOTM

J 20 40 80

Data Method Top5 Top10 Top20 Top5 Top10 Top20 Top5 Top10 Top20

NetE oBTM-S -10.33 -61.70 -304.37 -9.97 -60.83 -297.83 -9.74 -61.85 -301.24

iBTM-S -11.06 -62.40 -300.47 -10.55 -61.63 -297.18 -10.72 -63.00 -308.00

oCOTM -10.25 -60.41 -300.70 -9.73 -57.96 -279.85 -9.04 -53.51 -262.18

Sina oBTM-S -8.92 -53.03 -260.86 -9.53 -55.57 -284.78 -9.11 -58.01 -301.62

iBTM-S -9.11 -53.21 -257.91 -9.67 -55.82 -289.14 -9.15 -59.36 -307.52

oCOTM -8.89 -52.67 -248.48 -9.50 -54.56 -269.41 -8.58 -53.76 -250.81
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example demonstrate that COTM can be efficiently used for identifying topically irrelevant
comments, and can be potentially used to detect spam reviews.

4.3 Evaluation of online COTM

4.3.1 Topic coherence

To evaluate the quality of topics learned by online algorithms, we compare the aver-
age coherence scores of the models. We first compare oCOTM with oLDA-B, and set
KoCOT M = 100, KoLDA−B = KoCOT M + JoCOT M where JoCOT M is 20, 40 or 80.
From the coherence scores shown in Table 11, we see that oCOTM achieves higher topic
coherence scores than oLDA-B in all experimental settings for the two datasets.

We next use average coherence scores to compare the quality of informal topics learned
by oCOTMwith the quality of topics learned by oBTM-S and iBTM-S. We setKoBT M−S =
KiBT M−S = JoCOT M . While online BTM algorithms use biterms from the entire collection
of short texts, the learning of informal topics in oCOTM only gains knowledge from a subset
of words in each short comment. This difference implies an additional inherent advantage to
the BTM algorithms, besides the one mentioned before that BTM’s basic assumption is consis-
tent with the definition of coherent score. Nonetheless, we still find that oCOTM outperforms
iBTM-S and oBTM-S in all experimental settings for the two datasets, as shown in Table 12.

4.3.2 Document classification

We further evaluate the quality of topic representation of documents learned by oCOTM
through document classification for the Sina dataset.

In the experiment of classifying normal documents, we set KoCOT M = 100, JoCOT M =
50 and KoLDA−B = 150. Topic proportions of normal documents are used as features in
classification. From the results shown in Figure 6a, we observe that the accuracy of oCOTM
is higher than oLDA-B. In the experiment of classifying short texts, we set KoCOT M = 100,
and JoCOT M = KoLDA−S = 50. From the results shown in Figure 6b, we find that oCOTM
outperforms oLDA-S dramatically. Overall, oCOTM achieves the best performance both in
classifying normal documents and short texts at all time slices.

(a) Normal documents classification (b) Short texts classification

Figure 6 Comparison of classification performance of online algorithms on Sina dataset
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5 Conclusion

With the development of online services, co-occurring normal documents and short texts
are becoming increasingly prevalent throughout the Internet. Conventional topic models
designed for normal texts or short texts are not applicable to these texts with co-occurring
structure. In this paper, we propose a novel topic model, namely COTM, to deal with this
kind of text corpora. The COTM model can directly exploit the co-occurring structure, and
use information from both normal documents and short texts to learn topics in a mutually
reinforced way. We also introduce an online algorithm for COTM, referred to as oCOTM,
to deal with large scale datasets. Extensive experiments on the NetEase news and Sina
blog datasets demonstrate that COTM outperforms several state-of-art models in various
ways, including learning more prominent and comprehensive topics, and getting better topic
representations of documents. Besides, COTM can be potentially used for unsupervised
detection of spam reviews.
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China (973) under Grant No. 2013cb329600 and National Natural Science Foundation of China under Grant
Nos. 61672050, 61372191, 61472433, 61572492.

Appendix: Details of deriving the collapsed gibbs sampling algorithm

Given the full posterior distribution in (1), we can easily get the full conditional posterior
distributions for �, �, �, ξ and P .

For θd , d ∈ {1, 2, ..., D}, its full conditional posterior distribution is:

f (θd | ·) ∝
K∏

k=1
(θdk)

l
(1)
dk +g

(1)
dk +α−1. (17)

For φk, k ∈ {1, 2, ..., K}, its full conditional posterior distribution is:

f (φk | ·) ∝
V∏

v=1
(φkv)

l
(2)
kv +g

(2)
kv +β−1. (18)

For ψj , j ∈ {1, 2, ..., J }, its full conditional posterior distribution is:

f (ψj | ·) ∝
V∏

v=1
(ψjv)

g
(3)
jv +β−1

. (19)

For ξ , its full conditional posterior distribution is:

f (ξ | ·) ∝
J∏

j=1
(εj )

hj +ε−1. (20)

For pdc, d ∈ {1, 2, ..., D}, c ∈ {1, 2, ..., Cd}, its full conditional posterior distribution is:

f (pdc | ·) ∝ (pdc)
s
(1)
dc +γ−1(1 − pdc)

s
(2)
dc +γ−1. (21)

Noting the posterior distributions of �, �, �, ξ and P are all Dirichlet, conjugate with
their priors, we can develop a collapsed Gibbs sampling algorithm by integrating out these
parameters from the posterior distribution.
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To describe this procedure, we start with introducing the Dirichlet distribution. Suppose
X = (X1, ..., XK)T , following a Dirichlet distribution with parameter α = (α1, ..., αK)T .
The probability density function of X is

f (X|α) = f (X1, ..., XK |α1, ..., αK) =



(∑K
i=1 αi

)
∏K

i=1 
(αi)

∏K
i=1 X

αi−1
i . (22)

Since the integral of f (X|α) is equal to 1, we can get

∫ {∏K
i=1 X

αi−1
i

}
dX1...dXK =

∏K
i=1 
(αi)



(∑K

i=1 αi

) . (23)

Similarly, given the conditional posterior distribution of � is Dirichlet, as described in
(17), we can integrate it out and get:∫

f (� | ·)d� = ∏D
d=1

∫
f (θd | ·)dθd

∝ ∏D
d=1

∫ {
K∏

k=1
(θdk)

l
(1)
dk +g

(1)
dk +α−1

}
dθd1...dθdK = ∏D

d=1

∏K
i=1 


(
l
(1)
dk + g

(1)
dk + α

)



{∑K

k=1(l
(1)
dk + g

(1)
dk + α)

} .

(24)
Then we integrate out �, �, ξ and P similarly and get the following results:

∫
f (� | ·)d� = ∏K

k=1

∫
f (φk | ·)dφk ∝ ∏K

k=1

∏V
v=1 


(
l
(2)
kv + g

(2)
kv + β

)



{∑V

v=1

(
l
(2)
kv + g

(2)
kv + β

)}

∫
f (� | ·)d� = ∏J

j=1

∫
f (ψj | ·)dψj ∝ ∏J

j=1

∏V
v=1 


(
g

(3)
jv + β

)



{∑V

v=1

(
g

(3)
jv + β

)}
∫

f (ξ | ·)dξ ∝
∏J

j=1 
(hj + ε)



{∑J

j=1(hj + ε)
}

∫
f (P | ·)dP = ∏D

d=1
∏Cd

c=1

∫
f (pdc | ·)dpdc ∝ ∏D

d=1
∏Cd

c=1



(
s
(1)
dc + s

(2)
dc + γ

)



(
s
(1)
dc + γ

)



(
s
(2)
dc + γ

)
(25)

By integrating out �, �, �, ξ and P , the full posterior distribution in (1) can be
simplified as:

f (z, b, x, y | w, α, β, γ, ε)

= ∫
f (z, b,P , x, y, �,�, �, ξ | w, α, β, γ, ε)d�d�d�dξdP

∝ ∏D
d=1

∏K
i=1 


(
l
(1)
dk + g

(1)
dk + α

)



{∑K

k=1

(
l
(1)
dk + g

(1)
dk + α

)} × ∏K
k=1

∏V
v=1 


(
l
(2)
kv + g

(2)
kv + β

)



{∑V

v=1

(
l
(2)
kv + g

(2)
kv + β

)}

× ∏J
j=1

∏V
v=1 


(
g

(3)
jv + β

)



{∑V

v=1(g
(3)
jv +β)

} ×
∏J

j=1 
(hj + ε)



{∑J

j=1(hj +ε)
} ×∏D

d=1
∏Cd

c=1



(
s
(1)
dc +s

(2)
dc +γ

)



(
s
(1)
dc +γ )
(s

(2)
dc +γ

) .

(26)

Thus, we can use the collapsed Gibbs sampling and only need to update z, x, y and b in each
iteration. We then derive the conditional posterior distributions of z, x, y and b from (26).
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Specifically, for the nth word in normal document d, zdn = k only influences l
(1)
dk and

l
(2)
kwdn

in (26). Let z−dn denote z excluding zdn, and the full conditional distribution of zdn

can be derived as:

f (zdn = k | ·) = f (zdn = k, z−dn | ·)
f (z−dn | ·)

∝



(
l
(1)
dk + g

(1)
dk + α

)



(
l
(1)
dk;−dn

+ g
(1)
dk + α

)/
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k′ �=k

(
l
(1)
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(1)
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)
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+ g
(1)
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)}



{∑

k′ �=k

(
l
(1)
dk + g

(1)
dk + α
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(27)
where the subscript “−dn” indicates counts excluding the nth word in normal document
d, l

(1)
d· and g

(1)
d· are the sum of l

(1)
dk and g

(1)
dk over all formal topics k, and l

(2)
k· and g

(2)
k· are

the sum of l
(2)
kv and g

(2)
kv over all words v. Noting l

(1)
d· is equal to the total number of words

in document d and g
(1)
d· is equal to the total number of words in all short texts associated

with normal document d, l
(1)
d· and g

(1)
d· are constant values. Using the characteristics of 


function, which is 
(x + 1) = x
(x), (27) can be simplified as

f (zdn = k | ·) ∝
(
l
(1)
dk;−dn

+ g
(1)
dk + α

)
× l

(2)
k,wdn;−dn

+ g
(2)
k,wdn

+ β

l
(2)
k·;−dn

+ g
(2)
k· + Vβ

.

For b, x, y, we can derive their conditional posterior distributions from (26) similarly.
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