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EFFICIENT LEARNING AND JOB TURNOVER IN THE LABOR MARKET∗

BY FEI LI AND XI WENG 1
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This article nests a continuous-time learning model à la Jovanovic (Journal of Political Economy 92 (1984),
108–22) into a directed on-the-job search framework. We prove that the socially efficient allocation is separable,
that is, the workers’ value functions and optimal controls are independent of both the distribution of workers
across their current match qualities and the unemployment rate. We characterize the dynamics of job transitions
in the efficient allocation. Furthermore, when the matching technology is linear, our numerical results show that
increasing the vacancy creation cost and the speed of learning have ambiguous effects on the unemployment
rate and aggregate job transition.

1. INTRODUCTION

This article nests a continuous-time learning model à la Jovanovic (1984) into a directed on-
the-job search framework. In our model, each worker–firm pair gradually learns its unknown
match quality based on cumulative output. The unknown match quality follows a two-point
distribution: It is either high or low. Search is directed in the sense that a worker knows the
terms of trade offered by different firms before choosing where to apply for a job, as in Moen
(1997) and Acemoglu and Shimer (1999). Based on the unidimensional posterior belief about
the match quality, a worker decides if and where to search on the job.

Due to the ex post heterogeneous performance of matches, any nontrivial allocation in-
evitably generates a time-varying distribution of matches over the ex post qualities. In general,
each individual’s optimal decision may depend on this time-varying distribution. As a result,
previous studies mainly analyze the steady state where the distribution is constant over time.2

In a recent pioneering paper, Menzio and Shi (2011) developed a discrete-time framework with
directed on-the-job search and aggregate productivity fluctuation. They showed that the unique
socially efficient solution is separable, in the sense that it does not depend on the time-varying
distribution. As the efficient allocation can be implemented by a decentralized market equilib-
rium if firms and workers can sign complete contracts, their technique allows for equilibrium
analysis of the dynamics of job-to-job transitions.

The current article can be viewed as a continuous-time analog of Menzio and Shi (2011)
with Gaussian learning. Similar to Menzio and Shi (2011), the efficient allocation depends on
neither the distribution of the quality of current matches nor unemployment rate. Consequently,
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the planner’s problem can be decomposed into two parts. The planner decides where to send
unemployed workers to search for jobs. For employed workers, the planner gradually learns
the quality of their matches and decides when to separate them and where each worker should
search on the job. Since employed workers are allowed to search on the job, the planner is able
to replace an unpromising match with a new one without suffering the inefficient delay during
job-to-job transition caused by search frictions.

We fully characterize the efficient allocation. When the belief about the quality of a match
being high is large enough, the planner prefers to maintain the match, so it is inefficient to send
the worker to search on the job or separate the match. When the belief is low enough, the planner
immediately separates the match by ending the worker’s employment. In the case where the
belief is intermediate, it is efficient to replace the current match with a new one but inefficient
to destroy the current match; thus, the worker is assigned to search on the job so that the
current match will be destroyed only if a new match is formed. More precisely, the job-finding
rate is decreasing in the quality of the employed worker’s current match because the benefit
of job-to-job transition rises as the quality of the current match becomes less promising. Like
Jovanovic (1984) and Moscarini (2005), our model can explain a number of robust empirical
observations on individual turnovers such as the hump-shaped relationship between tenure and
the hazard rate of separation.

We also analyze a parameterized example of the model with linear matching technology. This
example has a closed-form solution of the planner’s efficient allocation and the corresponding
ergodic stationary distribution of match quality and unemployment rate. We numerically study
the effects of changing the vacancy creation cost and the individual learning speed. Remarkably,
we find that (1) reducing the vacancy creation cost has an ambiguous effect on the unemployment
rate in the presence of learning, (2) the rate at which employed workers move into unemploy-
ment (the EU rate) changes nonmonotonically as the cost of vacancy creation declines, and
(3) although improving the speed of learning monotonically enhances the unemployment rate,
it has a nonmonotonic impact on the the rate at which workers move from one employer to
another (the EE rate).

Our main contribution is to establish the separability of the efficient allocation in a continuous-
time directed on-the-job search model with Gaussian learning.3 In Menzio and Shi (2011),
the problem is formulated in discrete time, and the separability result is proved by using a
contraction mapping argument. However, such an argument does not work in a continuous-
time model. We therefore develop a different way to prove the separability result. This approach
can also be applied to other similar settings. For example, Eeckhout and Weng (2015) consider
an application of this technique to a setting with unemployment learning.4

Our second contribution is to investigate the role of learning in an equilibrium economy.
To the best of our knowledge, Moscarini (2005) is the first paper that integrates a Jovanovic-
(1984) like learning model into an equilibrium search framework.5 Our model is different
from that of Moscarini (2005) in the following aspects: First, Moscarini (2005) assumes that
an employer’s on-the-job search decision is a yes-or-no choice, which allows him to model
the firm’s problem as a simple stopping-time problem.6 However, the model cannot explain
the heterogeneous job-finding rate among different employed workers engaged in on-the-job

3 Shi (2009) also considers a continuous-time directed search model and proves that the equilibrium is block recursive
(separable). However, the proof in Shi (2009) can ensure neither the uniqueness nor the efficiency of the equilibrium.

4 Another potential application is to introduce multiple occupations. For example, Papageorgiou (2014) considers a
two-sector model where each worker learns his comparative advantage in each sector and decides which sector to work
in. However, due to technical difficulties, this article cannot allow directed on-the-job search.

5 Gonzalez and Shi (2010) also develop an equilibrium learning model with directed search. In their model, all
matches are homogeneous, but over time a worker learns his job-finding ability, which is production irrelevant.

6 Strictly speaking, in Moscarini (2005), workers do not actively search on the job. New jobs arrive randomly, and
workers passively choose whether to accept the new job. Although one can add search intensity into Moscarini (2005),
the complications arising from his setting as the problem is no longer a stopping-time problem; the value and policy
functions cannot be solved explicitly in general as Moscarini (2005) did.
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search.7 In contrast, on-the-job search dynamics naturally appear in our model. Employed
workers’ job-finding rates may differ due to the differences in the quality of their current
matches. Second, in Moscarini (2005), search is random, and neither firms nor workers have
any commitment power, so the allocation is inefficient in general as shown by Weng (2015);
in contrast, we consider a directed search model and characterize the efficient allocation.8 To
implement the efficient allocation, as in Menzio and Shi (2011), one needs to assume that
workers and firms can sign complete contracts, which allows one to focus on the ex ante optimal
allocation.

The rest of the article is organized as follows: In Section 2, we present the model. In Section 3,
we formulate the planner’s problem and characterize the efficient allocation and its implications.
In Section 4, we parameterize the model with a linear match technology and present some
comparative statics results. Section 5 concludes. All proofs appear in the Appendix.

2. MODEL

2.1. Population of Firms and Workers. Time is continuous: t ∈ [0,+∞). The economy is
populated by a unit measure of workers and a sufficiently large measure of long-lived firms to
ensure free entry . Both firms and workers are ex ante homogeneous. Workers and firms are
risk neutral and discount future payoffs at a rate r > 0. Utility is transferable.

2.2. Production Technology and Filtering. A consumption good is produced by pairwise
firm–worker matches (jobs). The quality of each match, μ, is ex ante uncertain and id-
iosyncratic and is randomly assigned by Nature upon matching. The assigned quality of
the match is unknown, and the matched worker and firm share a common prior belief
about the quality of the match: Pr(μ = μH) = α0 and Pr(μ = μL) = 1 − α0, where α0 ∈ (0, 1),
μH ∈ R denotes a high-quality match, and μL ∈ R denotes a low-quality match such that
μH > μL.

At any moment, a match is exogenously destroyed at a rate ρ > 0. Before it is destroyed,
the match can generate a consumption good at any instant. The performance of each match
depends on its quality. To save notations, we also use t to denote the duration (or tenure) of a
given match in the rest of the article. The cumulative output of a match of duration t, Xt, follows
a Brownian motion with drift μ and known variance σ2:

Xt = μt + σZt ∼ N(μt, σ2t),

where μ ∈ {μH, μL} and Zt is a Wiener process. The realized performance is public information,
so both parties commonly update their beliefs about the quality of the match according to
Bayes’s rule. Specifically, denote αt ≡ Pr(μ = μH|Xt) as the posterior belief about the match
quality with duration t, where Xt = {Xτ}t

τ=0 is the realized path of its performance. The standard
result by Liptser and Shiryaev (2001) implies that

dαt = αt(1 − αt)s
[dXt − αtμHdt − (1 − αt)μLdt]

σ
,(1)

where [dXt − αtμHdt − (1 − αt)μLdt]/σ is the innovation process and follows the standard
Wiener process, and the signal-to-noise ratio s = (μH − μL)/σ measures the informative-

7 For example, Fujita (2012) documents a positive relationship between the employers’ job security concerns and
their job-finding rates.

8 As suggested by much empirical evidence, the assumption of random search may not capture the reality of job
search. Hall and Krueger (2008) present a survey of the U.S. labor market showing that a large proportion of workers
either “knew exactly” or “had a pretty good idea” about their future job at the beginning of the application process.
Also, Holzer et al. (1991) find a negative relationship between wage and the number of attracted applicants applicants,
which supports the assumption of directed search.
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ness of the learning. An unemployed worker enjoys a flow payoff b from leisure. Assume
b ∈ (μL, (1 − α0)μL + α0μH), so that a new match with unknown quality is ex ante de-
sirable, but a low-quality match is not. At any moment, a match can be separated
immediately.

2.3. Individual and Aggregate States. The posterior belief about the match quality, α ∈ [0, 1],
is a sufficient statistic for performance history and determines its future prospects; it is also a
natural state variable of an employed worker. An unemployed worker’s state is simply his
unemployment status. As a result, the space of individual state can be defined as a set � =
[0, 1] ∪ {−1}. Here, we abuse the notation by allowing α = −1 if the worker is unemployed to
define the individual state of a worker at a given time as a random variable. For each worker,
denote his expected “output” y(α) as follows:

y(α) =
{
αμH + (1 − α)μL if α ∈ [0, 1],
b if α = −1.

When a worker is unemployed, we abuse the notation and interpret his unemployment benefit
b as his “output.”

Define �(�) as the set of all cross-sectional probability measures of the individual worker
states. At any time t, denote Gt : � → [0, 1] as the cumulative distribution function correspond-
ing to the cross-sectional probability measure of the individual states of workers at time t, which
is a natural aggregate state of the economy. Namely, the measure of unemployed workers at
time t is represented by Gt(0) − Gt(−1) = ut for the sake of convenience.

2.4. Search andMatching Technology. Since we are mainly interested in the socially efficient
allocation, we focus on the job search and job creation decision of the planer. At any instant, the
planner sends workers and firms searching for new matches at different locations. Specifically,
the planner chooses how many vacancies to open in each location and and which locations each
(employed and unemployed) worker should search. As is standard in models of directed search
such as Moen (1997), the planner finds it optimal to send workers in different individual states
to search in different locations but has no incentive to send workers in the same individual state
to different locations.

At each location, the workers and the vacancies meet (and match) according to a constant-
returns-to-scale matching technology that can be described in terms of the tightness of the
location θ (i.e., the vacancy-to-worker ratio at the location). Specifically, at any instant, a worker
meets a vacancy at a rate p(θ), where p : R+ → R+ is a twice continuously differentiable, strictly
increasing, and concave function such that p(0) = 0, and limθ→∞ p(θ) = p̄ < ∞. The flow cost
of maintaining a vacancy is k > 0, which implies that the social cost of maintaining a vacancy
also constantly returns to scale and can be described in terms of the tightness θ. The per-worker
social cost of maintaining a tightness θ is given by kθ.

3. ANALYSIS

3.1. Formulation of the Planner’s Problem. At time t, the planner observes the aggregate
state of the economy Gt. The planner then decides whether to separate each match. Denote
δ(α) ∈ {0, 1} to be the planner’s separation decision for a match whose quality is believed to
be high with probability α ∈ [0, 1], that is, δ(α) = 1 represents separation whereas δ(α) = 0
represents no separation.9 In addition, the planner also chooses θ(α) ∈ R+, the tightness at the
location where the α-worker looks for new matches for α ∈ �.10

9 As is clear from the subsequent analysis, the planner has no incentive to randomize to separate a match almostsurely.
10 Effectively, the choice of θ is nontrivial only if the match is preserved.
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For each individual, we allow the planner’s allocation to potentially depend not only on the
individual’s state but also the calendar time and the aggregate state Gt. Formally, an admissible
plan for the planner is a measurable function (θ, δ) : R+ × � × �(�) → R+ × {0, 1}, which is
right-continuous in time. Namely, at time t when the aggregate state is Gt, θ(t, α, Gt) denotes the
tightness of the location where the α-worker is sent to search, and δ(t, α, Gt) is the separation
decision for a match with posterior α. δ(t,−1, Gt) is irrelevant and so is assumed to be 0. Denote
A as the set of all admissible plans.

Fix an admissible plan and the initial distribution of the states is given by G0, the process of
{Gt}t≥0 is deterministic by the “law of large number.”11 The planner’s payoff is given by

∫ ∞

0
e−rt

[∫
α∈�

y(α)dGt(α)
]

dt −
∫ ∞

0
e−rt

[∫
α∈�

kθ(t, α)dGt(α)
]

dt,(2)

where
∫
α∈�

y(α)dGt(α) is the total social “output” at time t and k
∫
α∈�

θ(t, α)dGt(α) is the total
social cost of vacancy creation at time t.

Let g(t, α) denote the probability density function corresponding with Gt(·) whenever it is
well defined. We can use a Kolmogorov forward equation to describe the law of motion of
g(t, α),∀α ∈ �. For any α ∈ [0, 1] \ {α0} such that δ(t, α, Gt) = 0, we have

∂g(t, α)
∂t

= ∂2

∂α2
[�(α)g(t, α)] − [ρ + p(θ(t, α, Gt))]g(t, α),(3)

where

�(α) = 1
2

s2α2(1 − α)2.

The first term of the right-hand-side of Equation (3) captures the density change due to arriving
information, and the second term reflects the change due to the separation of matches. The
probability density function has a kink at α0 due to the inflow of newly hired workers, so it is
not differentiable at α0. On the other hand,12

g(t+, α) = 0,∀α s.t. δ(t, α, Gt) = 1.(4)

If the measure of matches being destroyed at time t according to the planner’s plan is zero,13

then

u̇t = −p(θ(t, u))ut + ρ

∫
α∈[0,1]

[1 − δ(t, α, Gt)]dGt(α) +
∫

α∈[0,1]
δ(t, α)

∂g(t, α)
∂t

dα,(5)

where the first term of the right-hand side of Equation (5) represents the current unemployed
workers who find jobs, the second term represents the employed workers whose matches
are destroyed exogenously, and the last term represents the workers whose matches will be
destroyed by the planner deliberately. Conversely, if the measure being destroyed by the planner
is positive, then

ut+ = ut +
∫

α∈[0,1]
δ(t, α, Gt)dGt(α),(6)

11 We assume the law of large number holds. Duffie and Sun (2012) provide a formal treatment in a model with a
continuum of agents in which the set of individual types (states) of agents is finite. Some of their results still hold in the
case with a complete separable metric type space (see Duffie and Sun, 2007).

12 For any function f , f (x−) = limy↗x f (y) and f (x+) = limy↘x f (y).
13 That is to say,

∫
α∈δ−1

t (1) dGt(α) = 0, where δ−1
t (1) ⊂ [0, 1] denotes the (Borel) set of employed workers whose

matches will be destroyed at time t according to the planner’s plan.
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which implies that the measure of unemployed workers jumps at time t.
The planner’s problem is to choose an admissible plan to maximize (2) subject to (3), (4),

(5), and (6). Denote the planner’s value function as S(t, Gt). In principle, the planner’s problem
depends on the aggregate state of the economy, the cross-sectional distribution Gt; thus, the
planner’s problem has infinitely many dimensions of “state variables.” However, thanks to the
seminal work by Menzio and Shi (2011), no such difficulty arises in our model. Theorem 1 is a
continuous-time analog of the separability result in Menzio and Shi (2011). It shows that the
planner’s problem can be broken down into a set of individual problems, and the optimal plan
is distribution free.

THEOREM 1 (SEPARABILITY OF THE PLANNER’S PROBLEM). The planner’s value function is linear
in Gt(·) and it depends on the calendar time only through Gt. That is,

S(t, Gt) =
∫

α∈[0,1]
V (α)dGt(α) + utU,(7)

for any t ≥ 0, where V (α) and U are the component value functions such that

rV (α) = max
δ∈{0,1}

{δrU + (1 − δ) max
θ≥0

{y(α) + ρ(U − V (α)) + p(θ)[V (α0) − V (α)](8)

− kθ + �(α)V ′′(α)}},

and

rU = max
θ≥0

{b + p(θ)[V (α0) − U] − kθ},(9)

where the component value function V (α) is increasing and convex in α; that is, the planner’s
optimal allocation depends neither on the aggregate state Gt nor the calendar time t.

The planner’s problem in Equation (8) is associated with an employed worker or match
with a different belief; whereas, the value function U in Equation (9) is associated with the
unemployed worker’s problem. The economics behind Equations (8) and (9) will be explained
in Subsection 3.2 in great detail. However, it is worth noting that although the planner’s optimal
solution is stationary, his payoff S(t, Gt) critically depends on the aggregate state Gt, as does
the total measure of vacancy created.

As in Menzio and Shi (2011), the separability is driven by the assumption of directed search
so that workers can be sent to search at different locations having different tightness measures
and job-finding rates. Instead, imagine the search is random. The planner ideally may want to
assign different tightness levels for different workers. However, as the search is random, the
planner has to assign the same tightness for every worker; thus the distribution of the state of
workers, Gt, has to enter the planner’s trade-off in general.

The assumption of constant return to scale of both the matching technology and the vacancy
creation technology is also crucial for the separability result. It ensures that one cannot express
the planner’s problem per worker in terms of the tightness θ. In the labor search literature, the
cost of vacancy creation is almost exclusively assumed to be a linear function of the measure of
vacancies, which is constant return to scale.

3.2. Planner’s Solution. Although the planner’s problem is the solution of the component
value functions (8) and (9), it is not straightforward that such a solution exists and is unique.
In Moscarini (2005), the agent effectively needs to decide only when to separate the match, so
the existence of the optimal solution is proved by solving it explicitly. In the current model,
the planner needs to consider the worker’s on-the-job search location as well. In addition, the
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matching function appears in Equation (8). Without assuming some special function form, one
cannot solve the optimal solution explicitly. In the following, we show that the optimal solution
of the planner’s problem exists and is unique.

From the perspective of the planner, the component value function U in Equation (9) is
the social value function associated with an unemployed worker. The “opportunity cost” of
unemployment rU equals the sum of the three terms in the right-hand side of Equation (9).
The first term is the flow benefit of leisure, the second term is the product of the probability of
finding a new job, p(θu), and the “capital gain” from a new match V (α0) − U, and the last term
is the social cost of maintaining the tightness θu for each unemployed worker in the location
where he is searching for a job where θ∗

u ∈ R+ is the planner’s optimal choice.
The efficient choice for the tightness at the location visited by unemployed workers θ∗

u ∈ R+
satisfies

k ≥ p ′(θ∗
u)[V (α0) − U].(10)

The left-hand side is the marginal social cost of increasing the tightness at the location where
unemployed workers search for jobs, whereas, the right-hand side is the marginal social benefit,
which is given by the product of two terms. The first term is the marginal increase in the
probability with which an unemployed worker meets a vacancy, and the second term is the
capital gain of forming a match. If the planner’s optimal choice of tightness is an interior
solution (θ∗

u > 0), then the marginal cost equals the marginal benefit. The validity of the interior
solution can be ensured by assuming k to be sufficiently small (see Theorem 3).

Similarly, for an employed worker, the planner chooses a control variable θ(α), which is the
tightness of the location where the α-worker is sent to search on the job, and a stopping rule
δ(α) to separate the match. As the value function V (α) is increasing in α, the stopping rule is
characterized by a cutoff belief α ∈ [0, 1]:

δ(α) =
{

0 if α > α

1 otherwise.
(11)

If the planner finds it optimal to separate a match at α, its associated value function V (α) = U;
otherwise, it can be rewritten as the following Hamilton-Jacobi-Bellman (HJB) equation:

rV (α) = max
θ≥0

{y(α) + �(α)V ′′(α) + p(θ)[V (α0) − V (α)] + ρ(U − V (α)) − kθ}.(12)

The “opportunity cost” of a match that is good with posterior α equals the sum of the expected
flow payoff y(α), the value of diffusion-learning �(α)V ′′(α), the potential expected capital gain
of forming a new match, the social cost of maintaining tightness θ∗(α) in the location where
α-workers are sent to search on the job, and the expected capital loss following exogenous
separation at rate ρ where θ∗(α) ∈ R+ is the optimal choice of the planner.

The efficient choice of the tightness of the location visited by an employed worker is θ∗(α) ∈
R+ such that

k ≥ p ′(θ∗(α))[V (α0) − V (α)],(13)

where α is the posterior belief about his current match quality. As the condition is similar to
(10), we do not discuss it again. However, it is noteworthy that the optimal tightness choice
θ∗(α) is strictly positive only if V (α0) − V (α) is sufficiently large, that is, the current match is
believed to be bad with high probability. Unlike the case of the unemployed worker, one may
not obtain interior solutions for all α by assuming k to be sufficiently small. Fix a k > 0; if p ′(·)
is bounded, as the value function V (α) is continuous, for α smaller than but close to α0, one
must have θ∗(α) = 0.
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Last, the planner’s optimal separation choice is an optimal stopping-time decision. Because
b > 0, U > 0 (the planner can always choose θu = 0). In addition, because b ∈ (μL, μH), one
must have α ∈ (0, 1). By the standard result (see Dixit, 1993), the cutoff belief α must satisfy the
following two boundary conditions:

V (α) = U (value matching) and V ′(α) = 0 (smooth pasting).(14)

Roughly speaking, the planner maintains a match only if its expected social value, V (α) is
greater than its opportunity cost, U. At the cutoff belief, the social value does not have a
kink; otherwise, there is an additional value associated with choosing to “wait and see,” which
contradicts the optimality of separation. We summarize the properties of the planner’s solution
into the following theorem:

THEOREM 2. There is a unique triple (V (α), U, α) such that V : [0, 1] → R is continuous and
twice differentiable, U ∈ R+, α ∈ (0, α0), and they solve (8), (9), and (14) and characterize the
planner’s component value function in Theorem 1. In the efficient allocation,

1. a match is separated by the planner only if its quality α ≤ α, and
2. θ∗(α) is decreasing in α.

Theorem 2 establishes the uniqueness of the planner’s solution. Notice that we cannot use
a contraction mapping argument to guarantee the uniqueness in our continuous-time model.
Moreover, Menzio and Shi (2011) explicitly solve the value function by guessing a linear-form
solution. However, the value function V (α) defined by the second-order differential equation
(12) is not linear in α because learning leads to a nonlinear option value. Therefore, we use
the following procedure to solve for the triple (V (α), U, α) satisfying (8), (9), and (14): Given
any U, the second-order differential equation (12) with the initial boundary conditions (14) has
a unique solution V (α|U), which pins down the value of V (α0|U). Next, given V (α0|U), the
planner further determines the optimal search plan for the unemployed worker and obtains a
value Û, which has to equal U for consistency.

The intuition of the uniqueness result is straightforward. First, notice that V (α|U) ≥ U as
the match can be separated freely at any time. Second, V (α|U) is strictly increasing in U. This
is because when U is higher, the planner can always copy the optimal strategy when U is low
but enjoy a strictly higher payoff when the current match is separated. As a result, suppose
that the planner’s problem has multiple solutions; one must strictly dominate others, which is a
contradiction.

Theorem 2 also characterizes the efficient allocation. Because V (α) is increasing, to maintain
the equality of the marginal cost and the marginal benefit of vacancy creation in condition (13),
θ∗(α) has to increase in response to the decline of α. To put it differently, as the worker’s current
match becomes worse, the planner will create more vacancy for him. Because p(·) is increasing,
the job-finding rate of an employed worker is also decreasing in the quality of his current match
α if he is engaged in on-the-job search. Furthermore, since V (α) is increasing and greater than
U as long as α ≥ α, the job-finding rate of any employed worker who is searching on the job is
lower than that of an unemployed worker. As the statement holds for any α ∈ (α, 1], the average
job-finding rate of employed workers is low regardless of the cross-sectional distribution of the
quality of matches.

As mentioned earlier, there may be no interior solution for matches with high α. If k is so
small that an unemployed worker’s solution is an interior one, θ∗

u > 0, then by the continuity
of V (α) and the boundary conditions (14), there must exist a ᾱ ∈ [α, α0] such that θ∗(α) > 0
for α ∈ (α, ᾱ].14 In other words, if k is so large that it is inefficient for unemployed workers to
search, then it is also inefficient to allow employed workers to search; eventually all workers

14 We prove that ᾱ < α0 when p ′(0) is bounded. If p ′(0) is unbounded, then naturally ᾱ = α0.
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become unemployed. To avoid such a trivial case, we assume that the vacancy creation cost is
sufficiently small in the rest of this article. Formally,

THEOREM 3. Let k̂ = μH−μL
r+ρ

z(1−z)
β2−(1−z) zβ2−1(1 − z)−β2 ,where z = (β2−1)(b−μL)

β2(μH−μL)+μL−b . Suppose that k ∈
(0, k̂). In the efficient allocation,

1. unemployed workers search, θ∗
u > 0, and

2. employed workers search on the job, θ∗(α) > 0, if and only if α ∈ (α, ᾱ] where 0 < α < ᾱ ≤
α0.

Similar to Menzio and Shi (2011), in the current context, the planner’s efficient plan can
be implemented by a decentralized Block recursive market equilibrium if firms and workers
can sign bilaterally efficient contracts.15 Specifically, in the Block recursive equilibrium, there
is a continuum of submarkets opening. Submarkets differ from each other in terms of the
market tightness and the worker’s expected utility from joining a firm. From the perspective
of workers, the equilibrium expected utility from joining a firm is decreasing in the market
tightness and therefore in the job-finding rate. Given a bilaterally efficient contract, the two
parties in the firm–worker pair behave in a way that maximizes their joint surplus. As the market
is complete, the market mechanism internalizes the social cost of maintaining vacancy; thus,
the firm terminates his current match efficiently, and an employed worker searches on the job
efficiently. Remarkably, when the quality of his current match is low, the worker believes that
he will soon become jobless, so he has a strong incentive to start a new job. As a result, he
will search in a submarket with low expected utility but high market tightness (or job-finding
rate). On the other hand, when the quality of his current match is high, the worker does not
worry about job security, so he will either not search on the job or search in a submarket with
high expected utility but low job-finding rate. In sum, the motivation for a worker’s on-the-
job search comes mainly from his concern about his long-term career path (job security and
expected discounted payoff) instead of his interest in the short-term payoff. In fact, as both
workers and firms are risk neutral, the optimal flow wage is indeterminate.

3.3. Individual Turnover. Because the efficient allocation does not depend on the aggregate
state, a worker’s efficient career path is governed by the stationary search rule specified by
Theorem 2. For each job, the belief about the match quality starts from α0 and evolves according
to Bayes’s rule (1) given the realized performances. A match is terminated in one of three ways:
(1) an exogenous separation shock arrives, (2) a new (better) job is found and the worker
switches to the new position, or (3) the planner deliberately destroys the current match when α

reaches α.
A match can be viewed as a Bayesian experimentation: From the perspective of the planner,

an ongoing match is a “risky arm” as the true match quality is unknown, whereas making the
worker unemployed is a “safe arm.”16 As is standard in the Bayesian experimentation literature,
the belief process {αt} of each specific match is a martingale, that is, E[αt+�|αt] = αt for any � ≥ 0.
However, as a match will be separated if α ≤ α, the belief sequence {αt} of an ongoing project
is a strict submartingale. In other words, E[αt+�|ατ > α,∀τ ∈ [t, t + �], αt] > αt, which is the
standard selection effect of learning: Bad matches’ performances are low in expectation so that
there is a higher probability that they will soon be separated; thus, the average quality of an
ongoing match becomes better as the tenure of the worker rises. As t → ∞, only a high-quality
match can survive with a positive probability. This means that the probability that the match
is deliberately destroyed by the planner shrinks over the worker’s tenure. This selection effect

15 Menzio and Shi (2009) show that, if the contracting space is complete, the firm’s profit maximization contract is
bilaterally efficient.

16 Rigorously speaking, the social payoff of an unemployed worker rU is also uncertain due to the uncertain outcome
of the job search.
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implies that the average employment-to-unemployment (AEU) transition rate should decline
over a worker’s tenure. As the efficient on-the-job search policy p(θ∗(α)) is decreasing in α

and equals zero when α is sufficiently large, the average employment-to-employment (AEE)
transition rate of a worker should also decrease in t and converge to zero as t → ∞.

However, at t = 0, a wait-and-see effect emerges. Because the path of a Brownian motion is
continuous, the posterior belief cannot jump, so some workers’ beliefs may reside in the area
such that αt ≥ α and θ∗(αt) > 0 with positive probability when t is small. These workers start
to actively search on the job, resulting in a positive AEE transition rate when t is small but
positive. In addition, the posterior belief αt will reach α with positive probability, resulting in a
positive AEU transition rate when t is small but positive. As a result, both the AEU and AEE
rates rise initially (t = 0) but eventually decline to zero as t → ∞; thus the job separation rate
is also nonmonotone in tenure as in the case in both Jovanovic (1979) and Moscarini (2005).17

We summarize the implications above in the following theorem.

THEOREM 4. Conditional on match continuation, the expected match quality is increasing in t.
Both the AEE transition rate and the AEU transition rate are increasing at t = 0 and then decreas-
ing in t. Eventually, they converge to zero as t → ∞

4. LINEAR MATCHING TECHNOLOGY

In this section, we examine a special case of our model with a linear matching function. Doing
so allows us to obtain the closed-form solution of the efficient allocation and to conduct some
comparative statics exercises numerically. Specifically, suppose that p(θ) = min{θ, λ}, where λ

is a finite upper bound of the matching rate that ensures the existence of the efficient solution.
What is remarkable is that when both the matching function and the cost function of vacancy
creation are linear, the efficient allocation is a bang-bang solution generically, and thus the
efficient search allocation is effectively random: If k is sufficiently small, there exists ᾱ ∈ [α, α0]
such that

θ∗(α) =
{

0 if α > ᾱ

λ if α ∈ [α, ᾱ].

Without loss of any generality, we normalize μH = 1, μL = 0, so y(α) = α. When the match
quality is believed to be sufficiently high, the worker does not search on the job, so for α > ᾱ,
the value function V (α) satisfies

rV (α) = α + ρ(U − V (α)) + �(α)V ′′(α).

On the other hand, when α ∈ (α, ᾱ), we have

rV (α) = α + ρ(U − V (α)) + λ[V (ᾱ) − V (α) − k] + �(α)V ′′(α).

To differentiate the above two different cases, we denote the value function for α > ᾱ to be
V0(α), and for α ∈ (α, ᾱ) to be V1(α). At α and ᾱ, we have the boundary conditions including
the value matching and smooth pasting conditions:

V1(α) = U, V ′
1(α) = 0, V1(ᾱ) = V0(ᾱ), V ′

1(ᾱ) = V ′
0(ᾱ).(15)

In addition, at ᾱ, the marginal social benefit of on-the-job search is λ[V0(α0) − V0(ᾱ)], which
is the product of the probability that the worker finds a new job and the social capital gain of

17 See Farber (1999) for evidence of the hump-shaped average separation rate. See Menzio et al. (2012) for evidence
of the hump-shaped AEE rate.
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TABLE 1
PARAMETER VALUES

λ r ρ α0 b k s

1 0.1 0.1 0.5 0.1 0.1 1
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FIGURE 1

PLANNER’S COMPONENT VALUE FUNCTION FOR AN EMPLOYED WORKER [COLOR FIGURE CAN BE VIEWED AT

WILEYONLINELIBRARY.COM]

the job-to-job transition, whereas, the corresponding minimal social marginal cost to maintain
a matching rate p(θ) = λ is kλ. The optimality implies that the marginal social benefit equals
the marginal social cost. Canceling λ yields

V0(α0) − V0(ᾱ) = k,(16)

which constitutes the last boundary condition.
We can solve for the value function V (α) explicitly as

V (α) =

⎧⎪⎪⎨
⎪⎪⎩

α+ρU
r+ρ

+ κ0α
1−β2 (1 − α)β2 , if α > ᾱ

α+ρU+λV (ᾱ)
r+ρ+λ

+ κ1α
β1 (1 − α)1−β1 + κ2α

1−β1 (1 − α)β1 , if α ∈ [α, ᾱ]

U if α < α

where β1 = 1
2 +

√
1
4 + 2(r+ρ+λ)

s2 , β2 = 1
2 +

√
1
4 + 2(r+ρ)

s2 , and κ0, κ1, κ2 are coefficients satisfying the
boundary conditions at α and ᾱ, (15, 16).

To further address the properties of the efficient plan, we parameterize the model and numer-
ically examine some comparative statics with respect to the learning speed s and the vacancy
creation cost k. Suppose that the parameter values are given in Table 1. The corresponding nu-
merical results are α = 0.055, ᾱ = 0.4522 < α0, U = 5.5982, and the value function of employed
workers is given in Figure 1. Consistent with our theoretical analysis, the value function V (α)
is increasing and convex.
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4.1. The Ergodic Distribution. The closed-form solution of the efficient allocation allows us
to explicitly characterize the stationary distribution of workers’ employment status.18 By the
Kolmogorov forward equation (3), the stationary and ergodic density g(α) should satisfy the
following differential equation:

0 =
{

d2

dα2 [�(α)g(α)] − ρg(α), if α > ᾱ and α �= α0

d2

dα2 [�(α)g(α)] − (ρ + λ)g(α) if α ∈ [α, ᾱ],

since an employed worker searches on the job only if α ∈ [α, ᾱ], and the job-finding rate is λ.
The above equation does not hold at α0, where the inflow from unemployment and from other
jobs (quits) produces a kink in the density, as shown by Moscarini (2005).

The support of the ergodic density contains three intervals: [α, ᾱ], (ᾱ, α0], and (α0, 1]. The
general solution on each interval is19

g(α) =

⎧⎪⎨
⎪⎩

η0α
−1−γ1 (1 − α)γ1−2, if α > α0

η1α
γ1−2(1 − α)−1−γ1 + η2α

−1−γ1 (1 − α)γ1−2, if α ∈ (ᾱ, α0]

η3α
γ2−2(1 − α)−1−γ2 + η4α

−1−γ2 (1 − α)γ2−2, if α ∈ [α, ᾱ]

where γ1 = 1
2 +

√
1
4 + 2ρ

s2 and γ2 = 1
2 +

√
1
4 + 2(ρ+λ)

s2 .

Following Moscarini (2005), we impose the following boundary conditions:

g(α+) = 0,(17)

g(ᾱ+) = g(ᾱ−),(18)

g(α0+) = g(α0−),(19)

�(α)g′(α+) + ρ

∫ 1

α

g(α)dα = p(θ∗(α))(1 − ∫ 1
α

g(α)dα),(20)

�(α0)[g′(α0−) − g′(α0+)] = p(θ∗(α))(1 − ∫ 1
α

g(α)dα) + ∫ ᾱ

α
p(θ∗(α))g(α)dα.(21)

Equation (17) is the standard condition for “attainable” boundaries; Equations (18) and (19)
require the density function to be continuous at ᾱ and α0; Equation (20) requires that total flows
(respectively) in and out of unemployment must balance; and finally, Equation (21) requires
that total flows (respectively) in and out of new employment must balance.20

Because Equations (17)–(21) constitute a system of linear equations about five unknowns
η0–η4, we can directly solve the coefficients ηi once we know α and ᾱ. We parameterize the
model by using the same parameter values used for Figure 1. The ergodic density of the quality
of existing matches is depicted in Figure 2, and the unemployment rate is about 10%.

18 Notice that we need the separability result even if we focus on the socially efficient allocation in the steady state.
In general, the planner’s problem is difficult to solve because she has to take into account the fact that her decision
changes the stationary distribution. If the planner’s problem is not separable, it is unclear whether the socially efficient
allocation is stationary.

19 For α > α0, the general solution is actually η0α
−1−γ1 (1 − α)γ1−2 + η′

0α
γ1−2(1 − α)−1−γ1 , but since α = 1 is included

in the domain, η′
0 has to be zero to ensure the boundedness of the distribution function.

20 Equation (20) is derived from Equation (5) and the Kolmogorov forward equation.
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FIGURE 2

ERGODIC DENSITY OF THE QUALITY OF MATCHES [COLOR FIGURE CAN BE VIEWED AT WILEYONLINELIBRARY.COM]

The shape of the ergodic density is remarkable. Because the initial quality of every new match
is α0, the ergodic density function g(·) has a kink at α0. Because on-the-job search is efficient only
if α is low, the ergodic density for small α is low. A low-quality match (small α) will be separated
with high probability according to the efficient allocation. The smaller the α of a match, the
lower the chance that it can survive. As a result, when α < α0, the ergodic density declines as α

decreases. When α ≥ α0, the worker does not search on the job. A match is separated if either
an exogenous separation shock arrives or the match’s performance is poor for sufficient time
so that α declines to some point lower than α0. As α increases, two effects govern the shape of
the ergodic density g(α) for α ∈ [α0, 1]. First, every new match starts at α0. However, only some
of them are high-quality matches whose α will go beyond α0 with high probability. The larger α

becomes, the less likely it is that a new (bad) match “ends up” at α due to the selection effect.
This suggests that g(·) should be decreasing in α when α ≥ α0. Second, by Bayes’s rule, as α goes
to 1, dαt goes to 0 according to Equation (1); thus, once a match is believed to be good with a
probability α close to 1, it is less likely that α will escape a neighborhood of 1. This second effect
suggests that the ergodic density g(·) should be increasing in α when α is close to 1. The two
effects together imply an inverse U-shaped ergodic density for α ≥ α0.

4.2. Comparative Statics. In this subsection, we present the results of some numerical com-
parative statics exercises with respect to the vacancy creation cost k and the learning speed s.
First, we show how the efficient learning and on-the-job search plan responsed to the changes
in k and s. In Figure 3(a), we depict how the cutoffs change in the vacancy creation cost k. It
is not surprising that ᾱ is decreasing in k. On-the-job search becomes unlikely as the search
cost increases. However, it is novel that α is nonmonotonic in k. Economically, a higher cost of
vacancy creation leads to less job searching by employed and unemployed workers, and thus
the value of being employed and the value of being unemployed both decline. The optimal
stopping belief α depends on the relative changes of V (·) and U; thus, it may not be monotonic
in k.

In Figure 3(b), we plot how the cutoffs change in the learning speed s. Both ᾱ and α are
decreasing in s. As the speed of learning goes up, the benefit of learning (which is measured
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FIGURE 3

COMPARATIVE STATICS ON CUTOFFS [COLOR FIGURE CAN BE VIEWED AT WILEYONLINELIBRARY.COM]

by the value of newly arriving information) increases whereas the cost of learning (which
is captured by discounting and the vacancy creation cost) remains. Consequently, when s is
higher, it is more desirable to maintain an existing match for a given α, and, thus, the on-the-job
search and separation occur only if the match is believed to be good with lower probability.
From Figure 3(b), α decreases faster than ᾱ when s is low; the opposite occurs when s is high.

Next, we turn to the comparative statics of the ergodic unemployment rate and the aggregate
(cross-sectional) employment status transition rate with respect to k and s. The results are
presented in Figure 4.

4.2.1. Unemployment rate. Remarkably, the ergodic unemployment rate, u, is nonmonotone
in k. The nonmonotonicity results from the nonmonotonic relationship between k and α. As
k increases, the outflow of the pool of unemployed workers decreases. However, as α may
also decline, a match may be maintained even if its quality is low, which decreases the inflow
of the pool of the unemployed workers as well. Hence, the total effect of increasing k on the
unemployment rate is ambiguous in the presence of learning.21

On the other hand, when the learning speed s increases, more inefficient matches are de-
stroyed sooner. Although the stopping cutoff α declines, the unemployment rate goes up.
Consistent with the changes in ᾱ and α, the unemployment rate does not increase too much in
s when s is low, but increases rapidly in s when s is high.

4.2.2. EE transition rate. The ergodic cross-sectional employment-to-employment (EE)
transition rate is defined as the ratio between the stationary measure of workers who switch
jobs in a unit length of time and that of employed workers, that is,

EE �
∫ 1
α

p(θ∗(α)g(α)dα

1 − u
= λ[G(ᾱ) − G(α)]

1 − u
.

In the graph, the EE rate is decreasing in k. The result is intuitive. As k increases, it becomes
less efficient to create a large amount of vacancy in order to ensure a high job-finding rate of
employed workers whose current matches are not sufficiently promising.

When it comes to the change in s, the total effect is unclear. When s is low, α decreases faster
than ᾱ, and this implies that the total measure of workers who switch jobs increases as s goes

21 Notice that the change in k has a negligible effect on the unemployment rate (it stays around 10% in the example).
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up. Hence, the total EE rate increases as well. When s is high, ᾱ decreases faster than α, and
this implies that the total EE rate decreases as s goes up.

4.2.3. UE and EU transition rates. Because the job-finding rate is λ for any nontrivial k, s, the
measure of unemployed workers who successfully find jobs in a unit length of time is λu, which
implies that the total unemployment-to-employment transition rate (UE) is λ, which depends
on neither k nor s.

In the steady state, the measure of unemployed workers is constant over time, so the measure
of employed workers who become unemployed in a unit length of time equals λu. Thus the
employment-to-unemployment transition rate (EU) is

EU = λu
1 − u

= λ

(
−1 + 1

1 − u

)
.

As a result, the comparative statics of EU with respect to k and s are determined by those of u.
As u is nonmonotone in k, EU is nonmonotone in k as well.
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5. CONCLUSION

Since the seminal work by Jovanovic (1979), the learning theory of job turnover has remained
popular among labor economists. A worker–firm match is modeled as an experience good
whose quality is initially unknown and is gradually learned over time through a sequence of
observations of its performance. This model is useful for studying individual job turnover,
and it successfully explains a number of empirical observations (e.g., the initially positive but
soon negative relationship between tenure and the hazard rate of separation). On the other
hand, a large body of search and matching literature focuses on unemployment and aggregate
job turnover.22 This article combines two bodies of literature by introducing microeconomic
learning into a macroeconomic search model. We prove that the socially efficient allocation is
separable, so the socially efficient allocation can be characterized as a simple bandit problem.
An employed worker searches on the job if the quality of his current match is not sufficiently
good, and his job-finding rate is decreasing in his current match quality. When the quality
becomes sufficiently low, the match is separated and the worker becomes jobless. The model
generates a number of empirical implications about the dynamics of the job turnover rate.

APPENDIX

Proof of Theorem 1. PROOF. The proof proceeds in three steps.

1. We show that the planner’s value function at time 0 is separable.
2. We show that in the optimal solution, Ût = U for all t ≥ 0, and that the maximization

problem has a (stationary) Markovian solution.
3. We show that V (α) is convex and increasing.

Step 1. We want to show that the planner’s value function at time 0 can be rewritten as

∫
α∈[0,1]

V̂0(α)dG0(α) + u0Û0,

where Û0 denotes the expected payoff of an unemployed worker (α = −1) at time 0:

Û0 = sup
θ,σ∈A

E

[∫ τ

0
e−rt[b − kθt(u)]dt + e−rτV̂τ(α0)

]
,(A.1)

and V̂0(α) denotes the expected payoff of an employed worker with prior α ∈ [0, 1] at
time 0:

V̂0(α) = sup
θ,σ∈A

E

[∫ τ

0
e−rt[y(αt) − kθt(αt)]dt + e−rτÛτ|α0 = α

]
,(A.2)

and Ûτ and V̂τ(α) are defined in the same fashion at time τ ≥ 0. Specifically, fix any
admissible plan (θ, δ) ∈ A. For each worker whose state is α at time 0, the probability
measure of his individual state α̂ at time t is P(α(t) = α̂|α(0) = α). Suppose the initial
cross-sectional distribution of the individual state is G0(α); then we have

Gt(α̂) =
∫

α∈�

P(α(t) = α̂|α(0) = α)dG0(α)

for any α̂, α ∈ �, where Gt(α̂) is also the cross-sectional distribution of the individual
state of the economy at time t.

22 See Mortensen and Pissarides (1994), Burdett and Mortensen (1998), and Menzio and Shi (2011) as examples.
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Define

ht(α) = E[y(α(t)) − kθ(t, α(t))|α(0) = α]

=
∫

α̂∈�

[y(α̂) − kθ(t, α̂)]d Pr(α(t) = α̂|α(0) = α),

which is the expected social flow payoff of a worker at time t conditional on his individual
state being α at time 0, and

∫
α∈�

ht(α)dG0(α) =
∫

α∈�

∫
α̂∈�

y(α̂) − kθ(t, α̂)d Pr(α(t) = α̂|α(0) = α)dG0(α)

=
∫

α̂∈�

[y(α̂) − kθ(t, α̂)]dGt(α).

For a given plan (θ, σ) ∈ A, the planner’s payoff

W θ,σ(0, G0) =
∫ ∞

0
e−rt

∫
α̂∈�

[y(α̂) − kθ(t, α̂)]dGt(α)dt

=
∫ ∞

0
e−rt

∫
α∈�

ht(α)dG0(α)dt =
∫ ∞

0

∫
α∈�

e−rtht(α)dG0(α)dt

=
∫

α∈�

∫ ∞

0
e−rtht(α)dtdG0(α).

The planner’s goal is to choose (θ, σ) ∈ A to maximize W θ,σ(0, G0). Denote

S(0, G0) = sup
(θ,σ)∈A

W θ,σ(0, G0).

For α ∈ [0, 1], define

sup
(θ,σ)∈A

[∫ ∞

0
e−rtht(α)dt

]
= sup

(θ,σ)∈A
E

[∫ τ

0
e−rt[y(αt) − kθt(αt)]dt + e−rτÛτ|α0 = α

]

= V̂0(α),

where τ is the random time at which the current match is separated, and if α = −1,

sup
(θ,σ)∈A

[∫ ∞

0
e−rtht(α)dt

]
= sup

(θ,σ)∈A
E

[∫ τ

0
e−rt[b − kθt(u)]dt + e−rτV̂τ(α0)

]
= Û0,

where τ denotes the random time at which the worker finds a job.
Hence,

∫
α∈[0,1] V̂0(α)dG0(α) + u0Û0 ≥ W θ,σ(0, G0), for any θ, σ ∈ A, so

S(0, G0) ≤
∫

α∈[0,1]
V̂0(α)dG0(α) + u0Û0.

Note that as
∫ ∞

0 e−rtht(α)dt does not depend on G0(α). The optimal plans (θ, σ) of
problems (A.1) and (A.2) (if they exist) do not depend on G0(α) either. They depend
only on t and α ∈ �.
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On the other hand, the solutions of (A.1) and (A.2) depend on t and α ∈ �, so they
belong to A. By the definition of S(0, G0), we have

S(0, G0) ≥
∫

α∈[0,1]
V̂0(α)dG0(α) + u0Û0,

which leads to the desired result.
As the proof works for any G0, for any t ≥ 0, one can apply the previous argument
to prove that the planner’s problem is separable at any time t ≥ 0 with corresponding
aggregate state Gt. In the rest of the proof, we focus on the problem at time 0.

Step 2. First, notice that the planner’s objective is to maximize

S(0, G0) =
∫

α∈[0,1]
V̂0(α)dG0(α) + u0Û0.

Suppose on the contrary that in the optimal solution, there exists some t such that
Ût �= Û0. This allows for two possibilities. When Ût > Û0, then at time 0, the planner
can simply change the unemployed workers’ strategies to be the same as the time t un-
employed workers’ strategies. By doing so, the planner obtains a higher S(0, G0), which
leads to a contradiction. Similarly, when Ût < Û0, the planner can increase S(0, G0) by
letting the time t unemployed workers mimic the time 0 unemployed workers. Hence,
it follows that Ût = U for all t ≥ 0 in the optimal solution.
Second, since Ût = U for all t ≥ 0,

V̂0(α) = sup
θ,σ∈A

E

[∫ τ

0
e−rt[y(αt) − kθt(αt)]dt + e−rτU|α0 = α

]
.

Each employed worker is essentially facing an optimal stopping problem with stopping
value U. As shown by Krylov (1980), this stochastic optimal control problem has a
(stationary) Markovian solution.
Therefore, we can further express the value functions V (α) and U as

rV (α) = max{U, max
θ≥0

{y(α) + δ(U − V (α)) + p(θ)[V (α0) − V (α)] − kθ + �(α)V ′′(α)}

and

rU = max
θ≥0

{b + p(θ)[V (α0) − U] − kθ}.

Step 3. Fix any U. Consider any Markovian strategy � = {θ(α), δ(α)}. The expected payoff of
an employed worker with prior α associated with this strategy can be written as

V̂ �(α) = αE
�
μ=μH

[∫ τ

0
e−rt[yt − kθt(αt)]dt + e−rτU|α0 = α

]
(A.3)

+ (1 − α)E�
μ=μL

[∫ τ

0
e−rt[yt − kθt(αt)]dt + e−rτU|α0 = α

]
.

Let α = ηα1 + (1 − η)α2, with η ∈ [0, 1]. Following the arguments in Bonatti (2011), for
a prior α1 (resp. α2), suppose that the planner mistakenly believes the prior to be α and
follows strategy �. Then, the expected payoffs are V̂ �(αi; α) for i = 1, 2, where V̂ �(·; α)
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is defined as follows:

V̂ �(α̂; α) = α̂E
�
μ=μH

[∫ τ

0
e−rt[yt − kθt(αt)]dt + e−rτU|α0 = α

]
(A.4)

+ (1 − α̂)E�
μ=μL

[∫ τ

0
e−rt[yt − kθt(αt)]dt + e−rτU|α0 = α

]
.

Apparently, V̂ �(α) = V̂ �(α; α) and V̂ �(α̂; α) is linear in α̂.
It is straightforward to see that

V̂ �(α) = ηV̂ �(α1; α) + (1 − η)V̂ �(α2; α)

≤ ηV (α1) + (1 − η)V (α2),

for any �. The first equality of the above expression is immediately implied by the
linearity of V̂ �(·; α), whereas the second inequality comes from the fact that V (·)
achieves the highest value of the control problem for each α.
Taking the supremum of the left-hand side with respect to � establishes the convexity
of V .
Consider any α1 < α2 and suppose V̂ �1 (α1) = V (α1). For prior α2, we can similarly
define �2 to be another strategy in which the planner mistakenly believes the prior to
be α1 and follows strategy �1. Then, it is straightforward to see that V (α1) = V̂ �1 (α1) ≤
V̂ �2 (α2) ≤ V (α2).

�

Proof of Theorems 2 and 3. We prove Theorems 2 and 3 together. The proof proceeds in
four steps.

1. The first step rewrites Equations (9) and (12) such that the control variable θ is in a
compact set.

2. The second step constructs candidate solutions to Equations (9) and (12) given an arbi-
trary ᾱ < α0.

3. The third step shows that there exists a unique ᾱ satisfying the value matching and smooth
pasting conditions at α.

4. The final step provides conditions guaranteeing that ᾱ > α.

Step 1. Notice that the component value function of each individual must take the value in
[ b

r ,
μH
r ] where the lower bound is the individual rationality payoff, since the planner

can always leave a worker unemployed, and the upper bound is the expected value if
the match is good for sure, and it is never separated. Because p ′′(θ) ≤ 0 and p(·) is
bounded, limθ→∞ p ′(θ) = 0. Hence, the efficient θ∗

u is bounded above by some finite θ̄

such that p ′(θ̄)[μH − b] = rk. As V (α) ≥ U, the efficient θ∗(α) is also bounded above.
In sum, without loss of generality, one can focus on a compact feasible set of tightness
[0, θ̄]. Consequently, the value functions V (α) and U satisfy equations

rV (α) = max
θ∈[0,θ̄]

{y(α) + ρ(U − V (α)) + p(θ)[V (α0) − V (α)](A.5)

− kθ + �(α)V ′′(α)},

for α ≥ α, and

rV (α) = rU = max
θ∈[0,θ̄]

{b + p(θ)[V (α0) − U] − kθ},(A.6)
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if α < α. If a solution (V (α), U) exists, V (α) must be strictly increasing for α ≥ α because
it cannot be a constant on any interval from Equation (A.5). Since the planner’s optimal
separation decision is a stopping problem, the “stopping belief” α must satisfy V (α) = U
(value matching) and V ′(α) = 0 (smooth pasting) from Dixit (1993).

Step 2. We construct a candidate solution to the planner’s problem. Suppose that θ∗(α) > 0 for
some α ≥ α. For any V (α), the corresponding policy θ∗(α) > 0 only if p ′(0)[V (α0) −
V (α)] > k. Define

x = sup{α|θ∗(α′) = 0,∀α′ > α}.
For any k > 0, because p ′ is bounded and V (·) is continuous, x < α0, and by the
definition of x, p ′(0)[V (α0) − V (x)] = k.
Hence, the proof of the existence and uniqueness of V (α) is divided into two cases:
α ∈ [x, 1] and α ∈ [α, x). When α ≥ x, θ∗ = 0, so (A.5) becomes

rV (α) = y(α) + ρ(U − V (α)) + �(α)V ′′(α),(A.7)

with initial value boundary condition p ′(0)[V (α0) − V (x)] = k.
The general solution is given by

V0(α) = y(α) + ρU
r + ρ

+ κ0α
1−β2 (1 − α)β2 ,(A.8)

where β2 = 1
2 +

√
1
4 + 2(r+ρ)

s2 > 0, and κ0 is chosen to satisfy the boundary condition

V0(α0) − V0(x) = (μH − μL)(α0 − x)
r + ρ

+ κ0

[
α

1−β2
0 (1 − α0)β2 − x1−β2 (1 − x)β2

]
(A.9)

= k
p ′(0)

.

For a given x, there exists a unique κ0 satisfying the boundary condition (A.9). As the
value function V0 is strictly increasing, V ′

0(x) > 0, the implicit function theorem implies
that κ0(x) is decreasing in x: ∂κ0

∂x < 0. Since α0 > x, V (α0) is uniquely pinned down by

V0(α0) = y(α0) − rU
r + ρ

+ κ0(x)α1−β2
0 (1 − α0)β2 .

Plugging V0(α0) into Equation (A.6) yields

rU = T (U) � max
θ∈[0,θ̄]

{b + p(θ)[
y(α0) − rU

r + ρ
+ κ0(x)α1−β2

0 (1 − α0)β2 ] − kθ}.(A.10)

Obviously, T (U) is strictly decreasing in U with T (0) > 0 and limU→∞ T (U) < 0.
Therefore, there is a unique U(x) ∈ [b/r, V0(α0)] for each κ0 (or x). By the envelope
theorem, we obtain

∂U(x)
∂κ0

= (r + ρ)p(θ∗
u)

r(r + ρ + p(θ∗
u))

α
1−β2
0 (1 − α0)β2 .(A.11)

Now we turn to the case where α < x. The value function satisfies the ordinary differ-
ential equation (ODE)

rV (α) = max
θ∈[0,θ̄]

{y(α) + ρ (U(x) − V (α)) + p(θ)[V0(α0) − V (α)] − kθ + �(α)V ′′(α)}
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with boundary conditions V (x−) = V0(x; x) and V ′(x−) = V ′
0(x; x).23

The above ODE can be rewritten as

V ′′(α) = min
θ∈[0,θ̄]

rV (α) − y(α) − ρ (U(x) − V (α)) − p(θ)[V0(α0) − V (α)] + kθ

�(α)
.(A.12)

Notice that

Hθ(α, V (α)) � rV (α) − y(α) − ρ (U(x) − V (α)) − p(θ)[V0(α0) − V (α)] + kθ

�(α)

is differentiable in all of its arguments, with uniformly bounded derivatives over all
θ ∈ [0, θ̄]. Therefore, the right-hand side of Equation (A.12) is Lipschitz-continuous.
It follows that the solutions to (A.12) exist for α < x and are unique and continuous
in initial conditions V (x−) and V ′(x−). In summary, by fixing x < α0, we can find the
unique V (α; x) and U(x) satisfying Equations (A.5) and (A.6).

Step 3. Define function Ṽ (α; x) = V (α; x) − U(x). We want to show that there exists a unique
x such that when Ṽ (α; x) = 0, then Ṽ ′(α; x) = 0.

LEMMA A1. Consider x1 < x2 < α0. Then in the region where α < x2 and
Ṽ (α; x1), Ṽ (α; x2) ≥ 0, we must have Ṽ (α; x1) > Ṽ (α; x2) and Ṽ ′(α; x1) < Ṽ ′(α; x2).

PROOF. Since ∂κ0
∂x < 0, we have κ0(x1) > κ0(x2) and hence, V0(x2; x1) > V0(x2; x2) and

V ′
0(x2; x1) < V ′

0(x2; x2). Moreover, V0(α0; x1) > V0(α0; x2) implies that U(x1) > U(x2).
Notice that

Ṽ (x2; x) = y(x2) − rU(x)
r + ρ

+ κ0(x)x1−β2
2 (1 − x2)β2 ,

which implies that

∂Ṽ (x2; x)
∂κ0

= x1−β2
2 (1 − x2)β2 − r

r + ρ

∂U(x)
∂κ0

> x1−β2
2 (1 − x2)β2 − α

1−β2
0 (1 − α0)β2 > 0.

The first inequality comes from Equation (A.11); the second inequality comes from the
fact that x < α0. Hence, we obtain Ṽ (x2; x1) > Ṽ (x2; x2).
It suffices to show that Ṽ ′(α; x1) < Ṽ ′(α; x2). Suppose not and let α′ be the largest point
for which

Ṽ ′(α′; x1) = V ′(α′; x1) = Ṽ ′(α′; x2) = V ′(α′; x2).

Obviously, for α0 ≥ α > α′,

Ṽ ′(α; x1) = V ′(α; x1) < Ṽ ′(α; x2) = V ′(α; x2),

which implies that V (α0; x1) − V (α′; x1) < V (α0; x2) − V (α′; x2) and Ṽ (α′; x1) >

Ṽ (α′; x2). From Equation (A.12), it is straightforward to get V ′′(α′; x1) > V ′′(α′; x2),
which leads to a contradiction. �

As κ0 ≥ 0 (V has to be convex), x ≤ α0 − k
p ′(0)

r+δ
μH−μL

. As we decrease x from α0 −
k

p ′(0)
r+δ

μH−μL
, initially the resulting solutions Ṽ must reach 0 at some point α′ > 0, as

23 The smoothness of the value function has been proven by Strulovici and Szydlowski (2015).
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shown by curve A in Figure A1. By Lemma A1, point α′ decreases as we decrease x,
and Ṽ ′(α′; x) decreases as well. On the other hand, as x becomes sufficiently close to 0,
Ṽ (α) > 0 for all α > 0, as shown by curve C in Figure A1. Then we can simply choose
the smallest x∗ such that Ṽ (α∗; x∗) = 0 for some α∗ ∈ (0, α0) (curve B in Figure A1).
Because solutions with a smaller x would never reach 0, it follows that Ṽ (α; x∗) ≥ 0 for
all α ∈ (0, α0), and hence Ṽ has to be tangent to 0 at α∗: Ṽ ′(α′; x∗) = 0. By construction,
this is the unique x such that when Ṽ (α; x) = 0, then Ṽ ′(α; x) = 0.
It is straightforward to check that the (V, U) constructed is indeed a solution to the
optimal control problem following the verification theorems in Fleming and Soner
(2006).
When α > ᾱ, θ∗(α) is constant, so we only show that θ∗(α),∀α ∈ [α, ᾱ] is decreasing. At
an interior solution, we have the first-order condition

p ′(θ∗(α))[V (α0) − V (α)] = k.

Because k, V (α0) is fixed, and p ′′ ≤ 0, and V (α) is increasing in this domain, the desired
result follows.

Step 4. Notice that the above analysis does not prelude the possibility that ᾱ = α and θ∗(α) = 0
for all α. Suppose that this is the case. Then the value function satisfies

rV (α) = max{U, y(α) + ρ(U − V (α)) + �(α)V ′′(α)},

and U = b
r .
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There is an explicit solution to this optimal stopping problem: α = (β2−1)(b−μL)
β2(μH−μL)+μL−b , where

β2 = 1
2 +

√
1
4 + 2(r+ρ)

s2 > 1. For α > α, the value function is

V̂ (α) = y(α) + ρb
r

r + ρ
+ k̂α1−β2 (1 − α)β2 ,

where

k̂ = μH − μL

r + ρ

α(1 − α)
β2 − (1 − α)

αβ2−1(1 − α)−β2 .

Therefore, there exists α such that θ∗(α) > 0 if and only if V̂ (α0) − b
r > k

p ′(0) .
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