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A B S T R A C T

Is it true that, as the mainstream intuition asserts, urbanization and industrialization are the two main socio-
economic drivers of PM2.5? How do the two trends affect PM2.5 emission? This paper quantitatively analyzes
the socioeconomic drivers of PM2.5 through assessment on Stochastic Impacts by Regression on Population,
Affluence and Technology (STRIPAT), based on the panel data of 79 developing countries over 2001–2010. The
average levels of PM2.5 pollution are calculated using remote sensing data, overcoming the difficulties that
developing countries are in lack of PM2.5 monitors and that point data cannot reflect the overall level of PM2.5
pollution on a large scale. Squared terms of income and urbanization and their cross term are included in the
regression models respectively to analyze the possible heterogeneous impacts on PM2.5 emissions in different
development stages. The results show that income, urbanization and service sector have significant impact on
PM2.5 pollution. Income has a positive effect on PM2.5 all the time but the effect decreases as the level of
urbanization or income goes up. An inverted U relationship exists between urbanization and PM2.5, in which
PM2.5 pollution positively correlates with a low level of income or urbanization but negatively at a high level.
Policy recommendations from the perspective of macro-level social and economic regulation are provided for
developing economies to reduce PM2.5 pollution.

1. Introduction

1.1. Background

According to a global-scale estimate, PM2.51 concentrations are
high in densely populated areas that are undergoing fast urbanization
and industrialization (Van et al., 2010). Throughout history, many se-
vere air pollution events happened in urbanizing and industrializing
areas, such as the 1930 Meuse Valley fog (Nemery et al., 2001), the
Great Smog of 1952 (Davis, 2002), the Los Angeles photochemical smog
(Parrish et al., 2011) and Yokkaichi asthma (Guo et al., 2008). Cur-
rently, assessment of data on various countries shows that the PM2.5
accumulation in developed countries with high level of urbanization
and industrialization (such as United States and Western Europe) is
close to the natural background accumulation,2 while developing
countries that are in the process of rapid urbanization and in-
dustrialization are suffering from severe air pollution and people there
are exposed to high levels of particulate matter (WHO, 2006). For

example, in January 2013, northern China experienced a prolonged
smog, the PM2.5 peak shooting over 800 μg/m3, 32 times higher than
the World Health Organization (WHO)’s guideline value (Zhou et al.,
2015). In June of the same year, Southeast Asia was hit by a severe haze
and PM2.5 accumulations reached 329 μg/m3 (Betha et al., 2014). Van
et al. (2015) estimated that the percentage of global population living
in areas where the PM2.5 concentrations were above the WHO guide-
line level (35 μg/m3) increased from 22% in 1998–2000 to 30% in
2010–2012.

Given the fact that many developing countries suffer from PM2.5
pollution, it seems plausible that industrialization and urbanization are
the main drivers of PM2.5 pollution, which is the mainstream view.
However, this view lacks empirical tests and needs to be examined
through quantitative analysis. Thus, this study investigates the socio-
economic driving forces of PM2.5 in developing countries, using the
Stochastic Impacts by Regression on Population, Affluence and
Technology model (STIRPAT), on a panel dataset of 79 developing
countries over the period 2001–2010.
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1 Fine particles with a diameter of 2.5 µm or less.
2 The accumulation of a given species in a pristine air mass in which anthropogenic impurities of a relatively short lifetime are not present.
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1.2. Literature review

There is large body of literature studying socioeconomic driving
forces of air pollution, but most of them focused on carbon dioxide, and
others targeted sulfur oxides, oxides of nitrogen or PM10. As for PM2.5,
there have been plentiful studies focusing on source apportionment,
including both natural processes and human activities, from a micro-
level perspective (Kaur et al., 2007; Belis et al., 2013; Pui et al., 2014;
Karagulian et al., 2015; Li, Zhou, et al., 2015; Liang et al., 2016), while
its socioeconomic driving forces were almost ignored. Only recently,
few studies came to realize the importance of the macro drivers of
PM2.5 pollution. Xu and Lin (2016) and Xu et al. (2016) analyzed the
impact of income, energy intensity, urbanization, private vehicles and
coal consumption on PM2.5 pollution with a panel dataset of 29 pro-
vinces in China over 2001–2012.

Population, income, technology and industrial structure were the
four socioeconomic factors of air pollution that were widely studied in
recent literature.

First, in many studies, the population factor is demonstrated by the
population size and structure. Population size was related to carbon
emissions in Cole and Neumayer (2004), to non-renewable energy
consumption in Salim and Shafiei (2014). Population structure mainly
refers to the level of urbanization, measured as the percentage of urban
population in total population.3 York (2007) analyzed a panel dataset of
14 European Union countries over 1960–2000 and found that urbani-
zation had a positive, monotonic effect on energy consumption, which
indicated increased pollution. A study by Liddle and Lung (2010) on a
panel dataset of 17 developed countries covering the period
1960–2005, however, did not find significant impact of urbanization on
carbon emission. Martínez-Zarzoso and Maruotti (2011) concluded that
there was an inverted-U relationship between urbanization and carbon
emission, using a panel dataset of 88 developing countries over the
period 1975–2003. Xu and Lin (2015) found the nonlinear effect of
urbanization on CO2 emissions varies across regions in China: inverted
U-shaped pattern in the eastern region, positive U-shaped pattern in the
central region while insignificant nonlinear effect in the western region.
Rafiq et al. (2016) showed that although urbanization is insignificant in
impacting CO2 emissions, it seems to be a major factor behind energy
intensity.

Second, income, usually demonstrated as GDP per capita, is mostly
regarded to have an inverted-U relationship with environmental pres-
sure, known as Environmental Kuznets Curve (EKC). EKC is expressed
as follows: at the early and lower stage of development, environmental
pressure increases as income increases; however, when income reaches
a threshold value, environmental stress decreases (Grossman and
Krueger, 1996). The trade-off between consumption and good en-
vironment can explain the phenomena above: people spend most of
their income on consumption when income is meagre, causing growing
environmental pollution; but as income increases, the marginal utility
of clean environment gradually grows and finally surpasses that of
consumption (Ji and Chen, 2017). Thus, the willingness to pay for en-
vironmental protection rises as well and reduces pollution (Roca,
2003). However, some empirical studies did not support EKC and
showed different impact of income on environment. For example, Kaika
and Zervas (2013a) summarized 35 studies over 1992–2009 focusing on
the impact of income level on carbon emission, and found various re-
sults, such as positive, inverted-U or no significant relationship at both
national and global level. Baek (2015) examined the EKC hypothesis in
the Arctic nations and provided little evidence of the existence of the
hypothesis.

Third, energy intensity is widely used as a proxy for technology
level. It is a common view that the impact of economic activities on

environment is smaller when more energy efficient technologies are
applied (Kaika and Zervas, 2013a). Using a panel dataset of 208
countries from year 1975 to 2000, Fan et al. (2006) found that the
impact of energy intensity on carbon emission differed across devel-
opmental stages: at low income stage, energy intensity had significant
effect on carbon emission, while at middle and high income stage, the
effect was apparent yet weak. Sadorsky (2014) also found that energy
intensity had significant effect on carbon emission, using a panel da-
taset of 16 emerging countries over year 1971–2009.

Fourth, industrial structure is often measured by the percentage of
added value in GDP in different sectors: agriculture, industry and ser-
vice. The impact of industrial structure on environment pressure is
another possible explanation for EKC. At the early stage of develop-
ment, industrial activities dominate, resulting in higher natural re-
sources consumption and severer environmental degradation; later, as
high-tech industry and service sector gradually replace energy intensive
industry, the impact of economic activities on environmental pressure
becomes smaller (Dinda, 2004). Martínez-Zarzoso and Maruotti (2011)
found a weak impact of industrialization on carbon emission, using a
panel dataset of 73 countries over 1973–2003. Li and Lin (2015) found
that the impacts of industrialization on energy consumption and carbon
emission varied with different income levels: in lower middle and high
income groups, industrialization accompanied less energy consumption
but more carbon emission, while in upper middle income groups no
significant effects were found.

1.3. Research objectives

Though many studies have investigated and identified the main
socioeconomic driving forces of some air pollutants like carbon dioxide
and sulfur oxides, few have explored the socioeconomic drivers of
PM2.5. In order to find a reasonable explanation for the severe PM2.5
pollution in developing countries to assist relevant policy design, it is
urgent to quantitatively analyze the socioeconomic driving forces and
macro mechanism. Since many developing countries lack ground-based
monitoring PM2.5 data, this paper uses the global satellite observations
of PM2.5 concentrations over 2001–2010, provided by Socioeconomic
Data and Applications Center (SEDAC),4 and socioeconomic data of 79
developing countries to analyze the driving forces and provide a
quantitative basis for PM2.5 control.

The rest of this paper is organized as follows: Section 2 presents the
data, empirical models and research methodology. Section 3 presents
the empirical results. Section 4 discusses the results and Section 5 draws
the conclusion.

2. Material and methods

2.1. Data

2.1.1. Data of the average PM2.5 concentrations
The average PM2.5 concentrations are calculated based on the

global annual average PM2.5 grids over the period 2001–2010, pro-
vided by SEDAC (Battelle and Center, 2013; de Sherbinin et al., 2014),
according to the boundaries of each country. The original raster grids
from SEDAC have a grid cell resolution of 0.5° × 0.5° and cells at
different latitudes represent different actual sizes on Earth, which
means the arithmetic average of the PM2.5 grids within the boundaries
of a country is not the actual average PM2.5 concentrations of that
country. To address such problem, the weighted average PM2.5 con-
centrations of each country are calculated. The formula is as follows,

3 Some literature explores the relationship between age structure of population and
environmental pressure.

4 SEDAC, the Socioeconomic Data and Applications Center, is one of the Distributed
Active Archive Centers (DAACs) in the Earth Observing System Data and Information
System (EOSDIS) of the U.S. National Aeronautics and Space Administration.
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in which, dn,n+0.5 are the PM2.5 concentrations of the grid cells which
have a latitude between n° and n+0.5°, and CPM2.5 represents the
average PM2.5 concentrations.5 The countries covering no more than 4
grid cells are excluded for the consideration of data accuracy.6

The PM2.5 data provided by SEDAC are estimated from satellite
observations, which has two advantages over ground-based monitoring
data. One is that many developing countries lack ground-based mon-
itoring networks, while data PM2.5 concentrations in these countries
can be estimated from satellite observations (van Donkelaar et al.,
2010). Also, ground-based monitoring data can only represent location-
specific features and the locations of the monitors depend highly on the
objective of monitoring, which can be economic, social or environ-
mental (Chen et al., 2006). Satellite observations, on the contrary, have
a global coverage and can measure air pollution on a large scale.
Prud'homme et al. (2013) compared air pollution estimates based on
satellite remote sensing and ground-based monitoring, and found that
both can provide a consistent estimate of air pollution, suggesting that
satellite remote sensing can offer estimates for air pollution in areas
lacking ground-based monitoring networks.

2.1.2. Indicator for the socioeconomic drivers
The explanatory variables are population size (POP), urbanization

level (URB), GDP per capita (GDPPC), percentage of value added of
industry in GDP (IND), percentage of value added of service in GDP
(SER) and energy use per GDP (ERG).

Their definitions, unit of measurement and data sources are pre-
sented in Table 1.

2.1.3. Sample
The developing countries selected in this study are the countries

defined as low-income or middle-income countries by World Bank. We
use the classification criteria in 2005 because our data sample spans
from 2001 to 2010. The dataset in World Bank includes 59 low-income
countries and 94 middle-income countries. However, 34 low-income
countries and 42 middle-income countries are excluded in our study in
order to get a balanced data panel. In addition, the countries covering
no more than four grid cells (Lebanon, Trinidad and Tobago) are ex-
cluded for the consideration of data accuracy. Therefore, the rest 79
developing countries (25 low-income countries and 54 middle-income
countries) are chosen for our study (See Appendix A). In the main re-
sults of regression, we pool low-income and middle-income countries
together. In the robustness check, we estimate the coefficients for low-
income and middle-income countries respectively. The statistical de-
scription of variables are shown in Table 2.

2.2. Empirical model and methodology

2.2.1. Empirical model
The regression is based on the STIRPAT model developed on the

basis of IPAT identity and ImPACT identity. IPAT identity, I=PAT, is
widely used to analyze the effects of economic activity on environment
(Stern, 1992; Harrison and Pearce, 2000; York et al., 2003), in which I
is environmental impact, driven by three key factors: P for population,
A for affluence and T for technological level (environmental impact per
unit of GDP). ImPACT identity, developed by Waggoner and Ausubel
(2002) as I=PACT, is similar to IPAT, except that T is disaggregated

into C (consumption per unit of GDP) and T (environmental impact per
unit of consumption).

However, unlike IPAT and ImPACT, STIRPAT is not an accounting
equation, but a stochastic model used to test hypotheses empirically
(York et al., 2003), by adding scaling term a, exponential term b,c,d and
error term e to the original IPAT identity. STIRPAT model has been
successfully utilized in many empirical studies (Dietz and Rosa, 1997;
Cramer, 1998; Shi, 2003; York et al., 2003; Wang et al., 2011; Li et al.,
2011; Zhang et al., 2017; Long et al., 2017). The STIRPAT model is as
follows:

=I aP A T ei i
b

i
c

i
d

i (2)

Coefficients can be estimated using multivariate regression with the
variables in logarithmic form. Coefficient b, c and d, are the elasticities
of P, A and T, respectively. Thus,

= + + + +I a b P c A d T eln ln ln ln ln lni i i i i (3)

In a standard STIRPAT model as above, we are interested to look
into b, c and d, measuring the effects of population, affluence and
technology on environmental outcomes.

We further extend the model to include more economic variables for
our analysis. I denotes annually average PM2.5 concentrations at
country level. Population factors (P) include population level (POP) and
population structure (the proportion of urban population in total po-
pulation, URB). Affluence (A) is represented by GDP per capita
(GDPPC). Technology (T)7 has two proxies: industrial structure (IND,
the percentage of value added of industry in GDP, and SER, the per-
centage of value added of service in GDP) and energy intensity (energy
use per GDP, ERG). Moreover, there may be country specific effect due
to different geographic factors, and time specific effect due to fluctua-
tions of climate, etc. Thus, country dummy variables Ci and time
dummy variables Yt are included in the specified regression models and
respective test statistics are calculated to examine whether these
dummy variables are appropriate.

2.2.2. Methodology
First, linear effects are considered. Model 1 include the linear terms

POP, GDPPC, URB, IND, SER and ERG in the logarithmic form as well as
country dummy variable C and time dummy variable Y. The model is as
follows.

Model 1:

= + + + +

+ + + + +

I β β POP β GDPPC β URB β IND

β SER β ERG C Y u

ln ln ln ln ln

ln ln
it it it it it

it it i t

0 1 2 3 4

5 6 it (4)

In order to test multicollinearity among the variables in Model 1,
variance inflation factors (VIFs) are calculated (See Appendix B). Ac-
cording to Freund et al. (2006), if 0 <VIF< 10, we can safely con-
clude that multicollinearity does not exist. Here all VIFs are less than 5,
indicating that there is no multicollinearity among the linear variables.
In other words, though correlation between the variables exists (See
Appendix C), it does not mean multicollinearity.

However, Model 1 fails to express the nonlinear effects of income
and urbanization on PM2.5 concentrations. In order to analyze such
potential effects, two common approaches can be applied. One is to
split the observations into subsamples and examine their effects re-
spectively. For example, Poumanyvong and Kaneko (2010) estimated
the impact of urbanization on energy use and emissions They categor-
ized the sample into three groups: low-, middle- and high- income
group, to empirically test whether urbanization pressure on energy use
and emissions differed across income levels. Similarly, Martínez-
Zarzoso and Maruotti (2011) also categorized a sample of 88 countries
over 1975–2003 into low-, lower-middle- and upper-middle- groups to

5 The original grid cells cover the world from 70°N to 60°S latitude and values in some
grid cells are removed according to the exclusion criteria (van Donkelaar et al., 2010).
Calculation in this research does not include the grid cells with missing data. Since most
countries considered in the research locate between 70°N to 60°S latitude, the average
PM2.5 concentrations of each country calculated in this research are representative.

6 Two countries are excluded. They are Lebanon, Trinidad and Tobago.

7 In the STIRPAT model, T includes all factors other than P and A (York et al., 2003). In
this paper, T is decomposed into industrial structure and energy intensity.
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analyze the impact of urbanization on carbon emissions in each group.
The other approach is to add nonlinear terms into regression model to
capture the possible nonlinear effects. For instance, Jalil and Mahmud
(2009) added the quadratic term of income into their regression func-
tion to analyze the nonlinear impact of income on carbon emissions in
China from 1975 to 2003. Shafiei and Salim (2014) also added quad-
ratic terms of GDP per capita and urbanization to analyze the possible
nonlinear impact of income and urbanization on energy consumption
and carbon emissions in the panel dataset of 29 OECD countries from
1980 to 2011.

Since splitting the observations into different groups is not appro-
priate for this study due to the short time span (2001–2010), the latter
approach is applied and Model 1 is augmented with the quadratic term
of lnGDPPC and lnURB respectively as follows:

Model 2:

= + + + +

+ + + + + +

I β β POP β GDPPC β URB β IND

β SER β ERG β GDPPC C Y u

ln ln ln ln ln

ln ln [ln ]
it it it it it

it it it i t

0 1 2 3 4

5 6 7
2

it (5)

Model 3:

= + + + +

+ + + + + +

I β β POP β GDPPC β URB β IND

β SER β ERG β URB C Y u

ln ln ln ln ln

ln ln [ln ]
it it it it it

it it it i t

0 1 2 3 4

5 6 8
2

it (6)

Next, the interaction between the two nonlinear variables should be
considered in case of strong correlation in between. First, pair-wise
correlations are analyzed and the results are shown in Appendix C.
According to Gujarati and Porter (2009), correlation is relatively strong
when pair-wise correlation coefficients are higher than 0.5. If there is a
strong correlation between variables which are in both level term and
quadratic term in the regression models, the cross term between the
correlated variables should also be taken into consideration in model
specification and the theoretical meaning of the result of each model

must be carefully interpreted (Southwood, 1978).8 As shown in the
correlation matrix in Appendix C, the correlation coefficient between
lnGDPPC and lnURB is the only one above 0.5 among all independent
variables (0.77). Thus, Model 1 is augmented with the cross term of
lnGDPPC and lnURB as follows9:

Model 4:

= + + + +

+ + + + + +

I β β POP β GDPPC β URB β IND

β SER β ERG β GDPPC URB C Y u

ln ln ln ln ln

ln ln [ln *ln ]
it it it it it

it it it it i t

0 1 2 3 4

5 6 9 it

(7)

If the results of Model 4 are consistent with the ones of Model 2 and
Model 3, then the results of Model 4 are to be chosen for further dis-
cussion; otherwise the results of Model 2 and Model 3 are discussed
further.

There is also a need to test the possible existence of country specific
effect, time specific effect and other potential problems such as het-
eroscedasticity, cross sectional dependence and serial correlation. First,
the Hausman test can demonstrate the existence of country specific
effect, and F test is able to spot a potential time specific effect.
Heteroscedasticity is tested using modified Wald statistics and robust
Hausman test (Wooldridge, 2010), and robust F test should be used if
heteroscedasticity do exist. As for cross-sectional dependence, the Pe-
saran test (Pesaran, 2004) is chosen since the panel dataset has a small
T (T= 10) and a large N (N=79). The approach proposed by

Table 1
Description of the variables in the regression analysis.

Variable Definition Unit of measurement Data Source

PM2.5(PM) Annual-average estimated surface PM2.5 concentration at
country level

Micro-grams per cubic meter SEDACa and Natural
Earthb

Population(POP) Midyear population Number World Bank
Urbanization(URB) Urban population (% of total population) Percent World Bank
GDP per Capita (GDPPC) Gross domestic product per capita based on purchasing power

parity (PPP)
Constant 2011 international dollars World Bank

Industry(IND) Industry, value added (% of GDP) Percent World Bank
Service(SER) Services, etc., value added (% of GDP) Percent World Bank
Energy Intensity (ERG) Oil equivalent of energy use per constant PPP GDP Kilograms of oil equivalent per $1000 GDP (constant

2011 PPP)
World Bank

a Battelle, M. I. and F. I. E. S. Center (2013). Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD). Palisades, NY, NASA
Socioeconomic Data and Applications Center (SEDAC).

b Made with Natural Earth. Free vector and raster map data are available from http://www.naturalearthdata.com/.

Table 2
Statistics on the variables in the regression analysis.

Whole Sample (Obs.: 790) Low Income Countries (Obs.: 250) Middle Income Countries (Obs.:540)

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max Mean Std. Dev. Min Max

lnPM 2.239 0.556 0.080 3.710 2.624 0.551 1.363 3.710 2.062 0.461 0.080 3.004
lnPOP 16.552 1.458 14.043 21.014 16.901 1.433 14.699 20.910 16.390 1.442 14.043 21.014
lnGDPPC 8.760 0.850 6.391 10.220 7.750 0.523 6.391 8.776 9.228 0.489 8.075 10.220
lnURB 3.902 0.411 2.637 4.548 3.509 0.371 2.637 4.213 4.084 0.281 2.908 4.548
lnIND 3.417 0.336 2.341 4.349 3.208 0.360 2.341 4.349 3.514 0.275 2.447 4.252
lnSER 3.945 0.241 2.940 4.342 3.827 0.234 2.940 4.305 3.999 0.225 3.169 4.342
lnERG 4.965 0.539 3.973 6.688 5.294 0.540 4.014 6.688 4.812 0.466 3.973 6.518

*All variables are in natural logarithm form.

8 For example, if the real relationship of Y to X1, X2 is Y=a0 + a1X1 + a2X2 + a3X1×2

+ u (interactive relationship), when X1 and X2 is positively correlated, then the regres-
sion results of Y=a0 + a1X1 + a2X2 + a3X1

2 + u (or Y=a0 + a1X1 + a2X2 + a3X2
2) may

show that the relationship of Y to X1 (or X2) is in a quadratic form.
9 In models with X1, X2 and their cross term X1×2, the correlation between X1×2 and

X1 (or X2) can be high, but this does not violate the assumption of no multicollinearity and
the analysis of interaction effects, unless the correlation is so high that the software
cannot calculate the standard error (Jaccard and Turrisi, 2003).
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Wooldridge (2010) 10 is used to test for serial correlation. All test results
are listed in Table 3.

As in Table 3, the results of modified Wald test indicate the presence of
heteroscedasticity in all four models. Robust Hausman test results and robust
F test results prove the existence of country specific effect and time specific
effect. Thus, the country dummy variables Ci and time dummy variables Yt

are included in all four models. In cross section dimension, the results of
Pesaran test do not reject the null hypothesis of cross sectional independence.
In time series dimension, the results of the test proposed by Wooldridge
(2010) do not reject the null hypothesis of no serial correlation. Given the
presence of heteroscedasticity, cluster-robust standard errors at country level
are used (Rogers, 1994).

3. Results

3.1. Results of models 1–4

The regression results of the four models are listed in Table 4.

3.2. Model selection based on the results

In this section, the four models are compared and chosen for further
discussion according to their regression results.

As shown in Table 4, all quadratic terms in Model 2 to Model 4 are
significant, indicating the existence of nonlinear impact. Thus Model 2
to Model 4 are chosen for further discussion.

The concept of elasticity and turning point is interpreted here. In Model 2

to Model 4, the coefficients of the level terms lnGDPPC and lnURB are all
positive, while those of quadratic terms all negative. The GDPPC elasticity
(URB elasticity) can be calculated by taking the first partial derivative with
respect to lnGDPPC (lnURB).11 Here the elasticity decreases as the variable in
its expression increases as the coefficients of the level term are positive and
the coefficients of the quadratic term are negative. When the elasticity is
positive first and decreases as the variable increases, the turning point is
where the elasticity is zero. Prior to the turning point, the elasticity is positive
and pollution increases as the variable goes up; after the turning point, the
elasticity is negative and pollution decreases as the variable goes up.12 In this
paper, GDPPC elasticity (URB elasticity) is the percentage of the increase in
PM2.5 concentrations when there is one percent increase in GDP per capita
(urbanization rate). Specifically, when the elasticity is positive, PM2.5 con-
centrations increase as GDP per capita (urbanization rate) goes up, ceteris
paribus.

The comparison of Model 2, Model 3 and Model 4 focuses on the
trend of elasticity and whether a turning point exists. The calculation
results of elasticity and turning point are listed in Table 5.

The result of Model 2 shows that GDPPC elasticity of PM2.5 concentra-
tions decreases as GDP per capita goes up; however, since the theoretical
turning point of GDPPC (10.336) is higher than the maximal GDPPC in
sample countries (10.220) (shown in Table 2), the elasticity does not reach

Table 3
Test results of the models.

Model 1 Model 2 Model 3 Model 4

Hausman Test χ2(15)= 5.91 χ2(16)= 122.31*** χ2(16)= 140.27*** χ2(16)= 119.53***
F Statistics (Time Fixed Effect) F(9696)= 11.71*** F(9695)= 9.60*** F(9695)= 10.70*** F(9695)= 9.71***
Heteroskedasticity χ2(79)= 3402.79*** χ2(79)= 5238.02*** χ2(79)= 3822.50*** χ2(79)= 4333.10***
Robust Hausman Test χ2(6)= 25.96 *** χ2(7)= 33.09*** χ2(7)= 24.39*** χ2(7)= 30.83***
Robust F Statistics (Time Fixed Effect) F(9,78)= 18.52 *** F(9,78)= 14.63*** F(9,78)= 17.05*** F(9,78)= 15.71***
Cross-sectional dependencea 0.363(0.7170) 0.362(0.7175) 0.365(0.7153) 0.326(0.7443)
Serial correlationa F(1709)= 1.23(0.27) F(1709)= 1.60(0.21) F(1709)= 1.53(0.22) F(1709)= 1.83(0.18)

a Statistical significance is indicated by: ***p < 0.01, **p < 0.05, *p < 0.1.
b p-value in parentheses.

Table 4
Regression results of all four models.

Model 1 Model 2 Model 3 Model 4

lnPOP .325 (1.93)* 0.112 (0.58) 0.287 (1.73)* 0.139 (0.72)
lnGDPPC 0.191 (2.23)** 1.323 (3.28)*** 0.185 (2.18)** 0.925 (3.64)***
lnURB 0.195 (1.10) 0.098 (0.57) 2.555 (2.35)** 1.699 (2.98)***
lnIND 0.076 (1.18) 0.085 (1.39) 0.080 (1.27) 0.089 (1.44)
lnSER 0.173 (2.14)** 0.141 (1.94)* 0.169 (2.20)** 0.161 (2.15)**
lnERG 0.076 (1.27) 0.094 (1.57) 0.085 (1.43) 0.099 (1.69)*
[lnGDPPC]2 − 0.064 (−2.80)***
[lnURB]2 − 0.328 (−2.26)**
[lnGDPPC*lnURB] − 0.189 (−2.91)* **
Constant − 6.793(−2.06)** − 7.826(−2.41)** − 10.311(−2.93)*** − 9.625(−2.98)***
Year Dummies Yes Yes Yes Yes
Country Dummies Yes Yes Yes Yes
Observations 790 790 790 790
Groups 79 79 79 79

a t statistics in parentheses.
b Standard errors are clustered at country level.
c Statistical significance is indicated by: ***p < 0.01, **p < 0.05, *p < 0.1.

10 ûi,t and ûi,t-1 are the fixed effect residuals. Run the pooled OLS regression ûi,t on ûi,t-1
(i=1,2,…,N; t=2,3,…,T). δ is the estimated coefficient on ûi,t-1 and test H0: δ=−1/(T-
1) using the robust standard error. Under the null hypothesis, the errors are serially
uncorrelated.

11 In the model lnI = a + blnA, take the derivative relative to lnA, rather than A in
original units, and the coefficient is the A elasticity of I. For example, in the model lnQ =
a + blnP, where Q stands for quantity and P stands for price, the price elasticity of
quantity, which is b, is calculated by taking derivative with respect to lnP rather than P.

12 When the variable is in a squared term, the elasticity is expressed by the variable
itself. When the variable is in an cross term, the elasticity of the variable is expressed by
the other variable in the cross term. For example, in the model lnI = a + b[lnA]2, the
variable in the expression of A elasticity is lnA (A elasticity is 2blnA, exactly). However, in
the model lnI = a + b[lnA*lnB], the variable in the expression of A elasticity is lnB (A
elasticity is blnB, exactly).
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below zero and thus, there are no turning points in reality in the period
2001–2010. The result of Model 3 shows that URB elasticity of PM2.5 con-
centrations decreases as urbanization rate goes up and becomes negative at
high level of urbanization, indicating the presence of the urbanization turning
point. The results of Model 4 show that the GDPPC elasticity goes down
without a turning point as urbanization rate goes up as the theoretical turning
point of urbanization level (4.894) is higher than the maximal urbanization
level (4.548) in sample countries, while URB elasticity goes down with a
turning point as GDP per capita goes up. The results of Model 4 are consistent
with the results of Model 2 and Model 3, since Model 2 and Model 3 display
only part of the nonlinear effect. Thus, the following discussion is derived
from the results of Model 4.

3.3. Results based on model 4

Three key points in Model 4 are summarized as follows.
Among all factors studied, the impact of total population and in-

dustrialization on PM2.5 concentration is not so obvious, the impact of
GDPPC, URB and SER is significant, while the impact of energy consump-
tion per unit GDP is statistically insignificant on a 5% significance level.

Second, there is a positive correlation between income and PM2.5
concentration, but the effect of income on PM2.5 decreases as the level
of income and urbanization goes up, according to the regression results
of the squared term of GDPPC and the cross term.

Similarly, an inverted U-shaped relationship between urbanization
and PM2.5 concentrations exists, according to the results of the squared
term of URB and the cross term. At low level of income or urbanization,
URB has positive correlation with PM2.5 concentrations but negative at
a high level of income or urbanization.

3.4. Robustness check

To check robustness and dig deeper into the heterogeneity of countries,

we estimate all models for low-income countries and middle-income
countries respectively. We keep the quadratic and interaction terms in these
estimations because countries within one category are also heterogeneous
and nonlinear terms can capture non-constant marginal effects of income
and urbanization within each category. As the results shown in columns (2)
and (3) in Appendix E Tables E1–E4, the non-linear effects do exist in each
category. First, the nonlinear effects of URB are significant in low-income
countries. Second, the nonlinear effects of GDPPC are significant in middle-
income countries. Third, the interactive effects of GDPPC and URB are
significant in middle-income countries. These results provide detailed non-
linear effects within each category, and basically they are consistent with
the main results for our pooled data sample.

Another concern of the fixed effect model used in this paper is that
the explanatory variables may not be strictly exogenous. To address this
issue, difference generalized moment estimators (Difference GMM)
(Arellano and Bond, 1991) are adopted to demonstrate the no sig-
nificant existence of endogeneity. The instrument variables are the
second and third lags of each explanatory variables to deal with the
endogeneity due to simultaneity. Results are presented in columns (4)
to (6) in Appendix E. By comparing the coefficients estimated in fixed
effect models (FE) and Difference GMM, we find that they are not sig-
nificantly different from each other. To further test whether the ex-
planatory variables are exogenous, difference-in-Hansen tests are con-
ducted and the results are showed in Appendix E. Under the null
hypothesis, the explanatory variables are exogenous, and the null is not
rejected in all cases. Therefore, the variables can be treated exogenous
and the discussion part will focus on fixed effect results.

4. Discussion

The following discussion focuses on the impact of income (GDPPC),
urbanization (URB), service sector (SER) and energy intensity (ERG) on
PM2.5 concentration.

Table 5
Comparison of GDPPC elasticity, URB elasticity a and turning point in Model 2, 3, and 4.

Model Model 2 Model 3 Model 4b

Variable GDPPC URB GDPPC URB
Elasticity β2 + 2β7lnGDPPC β3 + 2β8lnURB β2 + β9lnURB β3 + β9lnGDPPC
Estimates of elasticity 1.323–0.128lnGDPPC 2.555–0.656lnURB 0.925–0.189lnURB 1.699–0.189lnGDPPC
Range of elasticity 0.505→0.015 0.825→− 0.428 0.427→0.065 0.491→− 0.233
Turning Point -β2/2β7 -β3/2β8 -β2/β9 -β3/β9
Estimates of turning

point
lnGDPPC*= 10.336 lnURB*= 3.895 lnURB*= 4.894 lnGDPPC*= 8.989

95% confidence interval
for turning point

(8.532, 12.033) (3.374, 4.416) -c

Diagram of elasticityd

Trend in PM2.5
concentrations

Ceteris paribus, PM2.5
concentration increases as GDPPC
increases at any income level.

Ceteris paribus, at low level of
urbanization, PM2.5 concentration
increases as urbanization rate
increases; after reaching the turning
point, PM2.5 concentration decreases
as urbanization rate increases.

Ceteris paribus, PM2.5
concentration increases as
GDPPC increases at any level of
urbanization.

Ceteris paribus, at low income level, PM2.5
concentration increases as urbanization
rate increases; at high income level, PM2.5
concentration decreases as urbanization
rate increases.

a In the model ln I = a + b ln A, the A elasticity of impact (not log A elasticity of impact) can be calculated by taking partial derivative with respect to log A.
Similarly, the GDPPC elasticity and URB elasticity are calculated here.

b In model 4, the variable in the expression of GDPPC elasticity is lnURB and thus lnURB is depicted on the horizontal axis in the diagram of GDPPC elasticity. It is
similar for URB elasticity.

c The 95% confidence intervals of GDPPC elasticity and URB elasticity are shown in Appendix D.
d The variable in the expression of elasticity is depicted on the horizontal axis. TP stands for turning point and E stands for elasticity.
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4.1. The impact mechanism of income on PM2.5

A positive correlation between income and PM2.5 exists all the
time, but it is marginally decreasing with the rising level of income and
urbanization.

First, why does the positive correlation exist all the time? If holding
population, urbanization, technological level and industrial structure
unchanged, higher income usually involves more industry activities,
thus implying more energy consumption and transportation activities,
all resulting in pollutants emissions, which is the proportional effect of
economic growth on the environment (Grossman and Krueger, 1992).

Second, why is the positive correlation marginally decreasing along
with the rising level of income? This is due to the technological effect of
economic growth (Grossman and Krueger, 1992; Dinda, 2004). The
technological effect brought by economic growth enables the replace-
ment for heavily-polluting production technologies with cleaner ones.
Since we did not find the turning point of income on PM2.5, the per-
formance of proportional effect outweighs technological effect in the
sample countries during the observation period.

Third, why is the positive correlation marginally decreasing along
with the rising level of urbanization? This is because urbanization
makes economic growth “greener” gradually. At the early stage of ur-
banization, economic growth is basically realized by “more produc-
tion”, while at the middle to late stage of urbanization, “efficient pro-
duction” contributes to economic growth mainly. Such transformation
can be observed in many of our studies. Generally speaking, urbani-
zation not only brings about innovative management idea and raises
production efficiency, but also shortens distance across production
chains, thus cutting down transport cost and environmental cost.

As Fig. 1 illustrates, average industrial output and energy use per
capita have been constantly increasing, demonstrating that higher in-
come is correlated to greater industrial output and energy consumption,
so there is positive correlation between income and PM2.5 emission.
However, energy use per output shows a downward trend, probably
due to technological effect and promotion of green production asso-
ciated with the increase of income, and as a result, the positive corre-
lation between income and PM2.5 emission marginally decreases.

4.2. The impact mechanism of urbanization on PM2.5

Inverted U-shaped relationships between PM2.5 and urbanization
exist across both urbanization level and income level, that is, urbani-
zation's impact on PM2.5 concentration at different urbanization levels
and different income levels presents heterogeneity. The inverted U-
shaped relationship between PM2.5 and urbanization means that some
factors (like various types of production activities) in urbanization will
lead to increase in PM2.5 pollution and other factors (like

agglomeration effect, energy structure transformation and environment
protection and improvement) can help reduce pollution. Generally, the
former factors play the leading role in the early stage of urbanization
while the latter ones come up later.

Specially, prior to the turning points, in the process of urbanization
at low level of urbanization or income, urban construction replaces
agricultural production and rural construction. During this period, ur-
banization is accompanied by the increase of urban production and
construction activities. The industries that keep the urban society and
economy functioning gradually develop, such as mining, construction,
transportation and industry. All of these are major emission sources of
PM2.5. In this period, the country transforms from an agricultural so-
ciety to an industrial one and starts to control environmental pollution.
Production activity is the main factor of PM2.5 pollution in this period.
As Fig. 2 shows, prior year 2008, the average output share of industrial
sectors over all 79 countries is generally increasing with minor fluc-
tuation, and the average output share of agricultural sectors is con-
stantly decreasing.

When urbanization or income level is higher than their turning
points, urbanization means not only that new kinds of urban socio-
economic activities will replace agricultural socioeconomic activities,
but also the update and optimization of the original ones. In this period,
the mitigation effect of urbanization on PM2.5 pollution gradually ap-
pears. The mitigation effect might be rooted in three aspects.

First is the progressive decrease of marginal industrial emission cost
(emission per unit GDP) as the returns to scale of industrial pollution
control increase progressively. In the process of urbanization, industrial
activities agglomerate in urban areas results in the agglomeration of
energy consumption and pollution emission in cities. However, for the
country as a whole, marginal industrial emission cost decreases in the
latter stage, benefitting from the economy of agglomeration and scale.
Meanwhile, due to the increasing return to scale of industrial pollution
control, unit cost of pollution control will decrease with the expansion
of production scale, and thus industrialization will promote pollution
control (Stern, 2004).

Second is the cleaner energy consumed by households. Urbanization
implies the transformation of rural household lifestyle to urban one,
during which household energy structure transforms from unclean en-
ergy (such as fuel wood and coal) to clean energy (such as gas). A study
on urban household energy structure in developing countries (Barnes
et al., 2010) showed that the transformation took place by three stages:
the first stage focused on fuel wood, the second charcoal, coal and
kerosene, and the third modern energy such as LPG (liquefied petro-
leum gas), gas and electricity. Since burning unclean energy is the key
source of PM2.5 (David et al., 2014), the transformation from unclean
energy structure to a clean one will reduce PM2.5 pollution. Aunan and
Wang (2014) found that during 2001–2010, in most families migrating
from rural to urban areas, energy consumption transformed from bio-
mass fuel and coal to clean energy, and their household PM2.5

Fig. 1. Industrial output (billion constant 2011 international dollars), Energy
use per GDP (kg of oil equivalent per $1000 GDP in constant 2011 PPP), and
Energy use per capita (kg of oil equivalent per capita). Average over all
countries in our data sample.
Data source: World Bank.

Fig. 2. Share of industrial sectors and agricultural sectors. Average over all
countries in our data sample.
Data source: World Bank
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pollution concentrations reduced by nearly 50 μg/m,3 60% of which
related with the migration from rural areas to urban areas. Herrerias
et al. (2016) suggest that urbanization has led to coal being replaced by
electricity in urban residential energy consumption. Besides residential
consumption, a general transition from high-pollution coal to clean
electricity driven by urbanization is found in Ma (2015). Taking China
as an example, as Fig. 3 shows, urban residents rely significantly less on
coal and more on natural gas than rural residents. Also, urban popu-
lation consumes more LPG than rural population. Share of clean energy
(LPG, gas, electricity) increases from 51.6% to 61.6% in urban area in
China from 2004 to 2015.

Third is the effectiveness of environmental protection and control.
Cities are the main PM2.5 polluted zones, and people living there are
the main victims, as well as the most motivated people to promote the
establishment of environmental protection system and the im-
plementation of environmental control policies. In the early stage of
urbanization, urban population is smaller than rural population, and it
is difficult for them to improve environment through political appeal.
When urbanization reaches a certain level, urban population becomes
the majority, and large citizen class’ focus on environmental pollution
will urge government to establish environmental protection systems
and issue relative policies. Meanwhile, it is more effective for citizens to
supervise the environment control process through media (Neverla,
2007). Furthermore, environmental problems’ effect on the benefits of

urban elite class will also prompt them to support pollution prevention
and control (Gonzalez, 2002). Fig. 4 plots the trend of the average
Policy and Institutions for Environmental Sustainability Ratings over
countries in our sample, which indicates the extent to which environ-
mental protection policies promote the sustainable use of resources and
the management of pollution. The rating shows an upward trend with
some fluctuations along with the increase of urbanization rate.

Some scholars think that urbanization is not good for environmental
protection because economic activities become highly centralized in urban
areas during this progress (Deshpande and Mishra, 2007; Sarzynski, 2012;
Tuo et al., 2013). However, this paper's empirical study shows that, on the
one hand, this conclusion is too one-sided and the environment protection
effect of urbanization differs across development stages. In the stage of
higher urbanization and income, urbanization is good for environment
protection. On the other hand, such conclusion confounds the two con-
cepts—environment protection of urban and environment protection of
urbanization. If population, income and technology are held the same, ur-
banization also brings about the opportunity to make use of resource and
environment service efficiently and intensively. Urbanization is not leading
to an increase in energy consumption and pollutant emission for the whole
country, instead, it only triggers an intensive gathering in urban zones (Ji,
2011). Glaeser (2011) indicated the similar opinion that it is of un-ignored
significance for urbanization to protect natural environment in his book,
Triumph of the City.

Fig. 3. Urban and rural residential energy consumptions by sources in 2004 and 2015.
Data sources: China Energy Statistical Yearbook
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4.3. The impact mechanism of services sector on PM2.5

Services sector can cause an increase of PM2.5 concentrations. This
is different from the generally accepted point of view that “service
sector is friendlier to environment than industry” because of the spe-
cificity of PM2.5 pollution sources. First, different from pollutants of
industrial activities such as sulfur dioxide, the main sources of PM2.5 in
service sectors13 are the burning of fossil energy in transportation
(Wang et al., 2006; Kinney et al., 2011; Cui et al., 2015) and lampblack
in food service sector (Chow and Watson, 2002; Li, Shu, et al., 2015).
Therefore, the pollutant sources of service sector cannot be ignored in
the survey of PM2.5 pollution problem. Fig. 5 illustrates the share of
total emissions contributed by transportation sector and food service
sector in three representative countries in our data sample in 2000,
2005 and 2010. The total of the two sectors accounts for around 40% of
total PM2.5 emissions in each country, and food service sector emits
more.

Second, different from industrialization production, energy con-
sumption and pollutant emission is scattered instead of concentrated,
such as exhaust gas and road dust in transporting and heating, and
raising dust in building repair and maintenance (office buildings, stores
and warehouses) 14 (Kaika and Zervas, 2013b). Due to the disperse of
energy consumption and pollution control, it is difficult to produce
economies of scale in service industries to reduce marginal cost. Similar
to this research, Alcántara and Padilla (2009) and Piaggio et al. (2015)
in Spain and Uruguay found that the service sector had a positive effect
on carbon emission, which to some extent is constant with the research
results of this paper.

4.4. The impact mechanism of energy intensity on PM2.5

We do not find significant impact of energy intensity on PM2.5 pollu-
tion, which might not meet the intuition. The specificity of PM2.5 sources
can be one reason. Besides industrial production, as the preceding analysis,
PM2.5 sources include automobiles, cooking activities and construction,
which are irrelevant with energy intensity. Secondly, energy intensity only
describes the economic efficiency level of energy utilization, but not the
energy quality, which has important impact on PM2.5 pollution. On the one
hand, quality of different energy sources differs significantly. Empirical

results showed that the burning of biomass and coal were the main human
activities generating PM2.5, while natural gas contributed less to PM2.5
pollution (Tessum et al., 2014; Zhang and Cao, 2015; Li et al., 2016; Liu
et al., 2016). On the other hand, the quality of a certain type of energy also
varies when the emission standard changes. The consumption of energy
with lower emission standard cause more PM2.5 pollution. For example,
empirical results showed that the concentrations of pollutants in automobile
waste air decreased significantly as emission standard becomes stricter
(Shen et al., 2014; Cao et al., 2016). Thus, the result that energy intensity
does not have significant impact on PM2.5 pollution sounds reasonable.

5. Conclusion

This paper analyzes socioeconomic driving factors of PM2.5 pollu-
tion in 79 developing countries from 2001 to 2010 using environmental
driving model STIRPAT. The PM2.5 pollution level in the paper comes
from satellite remote sensing data, which makes up for the lack of
surface observation, and addresses the problem that point data cannot
describe the overall situation of large-scale space.

The study finds that income, urbanization and service sector are the
key driving factors of PM2.5 pollution level. The details are as follows:

(1) Income Level: The positive effect of income on PM2.5 concentration
is ever-present. Theoretically, the inverted U-shaped curve relation
might exist between income and PM2.5 concentration, but all the
developing countries in this study are on the left side of the turning
point. This implies that the technical effect of economic growth on
environment cannot make up for the proportion effect in these
countries during the observation period of the study.

(2) Urbanization: Two inverted U-shaped curve relationship exists be-
tween urbanization and PM2.5 concentration. The result shows that
the increasing urbanization will reduce PM2.5 pollutant emission
after urbanization level or income level reaches their turning
points. The study finds that urbanization's positive effect on en-
vironment can be attributed to scale economy of industrial pollu-
tion control, optimization of household energy structure and ef-
fectiveness of environment protection and control.

(3) Service sector: Service sector is causing PM2.5 pollutant emission.
First, transportation and catering are parts of service sectors which
are both notable factors of PM2.5 pollution. Second, service sector
is scattered in terms of energy consumption and pollutant emission,
so it is difficult to obtain economies of scale in energy consumption
reduction and pollution control for service sector.

However, the conclusion of this paper does not imply that the pol-
lution of PM2.5 will reduce spontaneously with the advancement of
economic level and urbanization. The PM2.5 pollution problems in
developing countries should be addressed rationally and positively.

Fig. 4. Policy and Institutions for Environmental Sustainability Ratings and
urbanization. Rating: 1= lowest, 6= highest. Time interval does not exactly
match our data sample because ratings data on World Bank are only available
as of year 2005.
Data source: World Bank.
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Fig. 5. Share of emissions contributed by transportation sector and food service
sector in China, Mexico and India, in 2000, 2005 and 2010.
Data sources: IIASA.

13 The World Bank divides industries using International Standard Industrial
Classification of All Economic Activities (ISIC), according to http://data.worldbank.org/
indicator/NV.SRV.TETC.ZS.

14 According to International Standard Industrial Classification of All Economic
Activities, the value added of these activities is partially counted into industrial sectors,
but the increase of value added of service sector means increase of the proportion of these
dispersed pollution activities.
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First, the basic law of economic development and urbanization
process should be respected. A mechanism directly regulating urbani-
zation and industrialization is infeasible and unreasonable, so the role
of market and government in allocating resources and environmental
governance needs to be balanced. To achieve this, we must first em-
phasize market efficiency in the allocation of resources and environ-
mental governance. Scale of economies and technological effects de-
rived along with the processes of wealth accumulation and urbanization
can lead to conservation and positive environmental outcomes.

Second, what government should do is to make economic growth
and urbanization “greener” through promotion of cleaner technologies.
In pursuit of economic growth, many developing countries focus on
urbanization and industrial growth without paying attention to the
severe environmental outcomes before the turning point of income and
urbanization. Promotion of green technology results in better en-
vironmental outcome, without harming economic growth in the long
run, and overall, achieve higher social welfare. However, absent ra-
tional and positive government intervention, promotion of cleaner
technologies lacks or lags in the early stage of development because it
needs necessary short-term investments. Due to the present of such
market failure, government plays a crucial role before the natural
evolution of green trend. They are supposed to take actions, such as
enhancing economic efficiency and promoting cleaner technologies, to
reduce damages before the green trend takes field and eventually bring
forward the green trend.

Third, how to enhance economic efficiency and promote cleaner
technologies in the transition period in developing countries should be
discussed concerning both the political and economic feasibility. On
one hand, incentive-based instruments, such as pollution tax or emis-
sion trading scheme, can motivate firms to actively eliminate out-of-
date production capacity and adopt high-quality clean technologies. In
addition to thoroughly assess the economic outcome and distributional
effects of policy instrument, government needs to guarantee the de-
velopment of market-based transactions, provide effective regulatory
platform to build third-party emissions verification mechanisms and
certification system, and establish relevant laws and regulations. On the
other hand, provision of good-quality public service, such as optimizing
the city's function zoning and improving public transportation, provides
a more convenient and cleaner option for private consumption. Public-
Private Partnership (PPP) model can be used to guide private capital
into public goods supply, integrate government's matching fund pro-
vision with advantages of private capital in operation and innovation,
so as to enhance economic and environmental efficiency of public
service provision.
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Appendix A

List of 79 countries in the sample
Angola, Albania, Armenia, Azerbaijan, Benin, Bangladesh, Bulgaria, Bosnia and Herzegovina, Belarus, Bolivia, Brazil, Botswana, Chile, China,

Cote d'Ivoire, Congo Rep, Colombia, Costa Rica, Cuba, Czech Republic, Dominican Republic, Algeria, Ecuador, Egypt Arab Rep, Estonia, Ethiopia,
Gabon, Georgia, Ghana, Guatemala, Honduras, Croatia, Hungary, Indonesia, India, Jordan, Kazakhstan, Kenya, Kyrgyz Republic, Cambodia, Sri
Lanka, Lithuania, Latvia, Morocco, Moldova, Mexico, Macedonia, Mongolia, Mozambique, Malaysia, Namibia, Nigeria, Nicaragua, Nepal, Pakistan,
Panama, Peru, Philippines, Poland, Paraguay, Russian Federation, Sudan, Senegal, El Salvador, Slovak Republic, Togo, Thailand, Tajikistan,
Turkmenistan, Tunisia, Turkey, Tanzania, Ukraine, Uruguay, Uzbekistan, Venezuela, Vietnam, South Africa, Zambia

Low-income countries:

Low-income countries

1 Benin 9 Kyrgyz
Republic

17 Pakistan

2 Bangladesh 10 Cambodia 18 Sudan
3 Cote

d′Ivoire
11 Moldova 19 Senegal

4 Congo, Rep. 12 Mongolia 20 Togo
5 Ethiopia 13 Mozambique 21 Tajikistan
6 Ghana 14 Nigeria 22 Tanzania
7 India 15 Nicaragua 23 Uzbekistan
8 Kenya 16 Nepal 24 Vietnam

25 Zambia

Middle-income countries:

Middle Income Country

1 Angola 19 Ecuador 37 Malaysia
2 Albania 20 Egypt, Arab Rep. 38 Namibia
3 Armenia 21 Estonia 39 Panama
4 Azerbaijan 22 Gabon 40 Peru
5 Bulgaria 23 Georgia 41 Philippines
6 Bosnia and Herzegovina 24 Guatemala 42 Poland
7 Belarus 25 Honduras 43 Paraguay
8 Bolivia 26 Croatia 44 Russian Federation
9 Brazil 27 Hungary 45 El Salvador
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10 Botswana 28 Indonesia 46 Slovak Republic
11 Chile 29 Jordan 47 Thailand
12 China 30 Kazakhstan 48 Turkmenistan
13 Colombia 31 Sri Lanka 49 Tunisia
14 Costa Rica 32 Lithuania 50 Turkey
15 Cuba 33 Latvia 51 Ukraine
16 Czech Republic 34 Morocco 52 Uruguay
17 Dominican Republic 35 Mexico 53 Venezuela, RB
18 Algeria 36 Macedonia, FYR 54 South Africa

Appendix B

VIF test for collinearity

Variable Model 1
lnPOP 1.13
lnGDPPC 4.18
lnURB 2.67
lnIND 3.80
lnSER 3.33
lnERG 1.27
Mean VIF 2.73

Appendix C

Summary Correlations

lnPOP lnGDPPC lnURB lnIND lnSER lnERG

lnPOP 1
lnGDPPC − 0.176 1
lnURB − 0.268 0.771 1
lnIND 0.068 0.464 0.382 1
lnSER − 0.167 0.354 0.308 − 0.500 1
lnERG 0.100 − 0.456 − 0.372 − 0.227 − 0.194 1

Appendix D

See Figs. D1 and D2.

Fig. D1. 95% Confidence Interval of GDPPC Elasticity.
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Appendix E

See Tables E1–E4.

Fig. D2. 95% Confidence Interval of URB Elasticity.

Table E2
Regression results of Model 2 (including quadratic term of GDPPC).

(1) (2) (3) (4) (5) (6)
Fixed Effect Fixed Effect Fixed Effect Difference GMM Difference GMM Difference GMM
Whole Sample Low Income Middle Income Whole Sample Low Income Middle Income

lnPOP 0.112 (0.58) 0.205 (0.54) 0.025 (0.11) − 0.425 (−1.61) 0.006 (0.01) − 0.331 (−1.02)
lnGDPPC 1.323 (3.28) *** 0.288 (0.93) 2.099 (3.45) *** 2.610 (3.71) *** 1.694 (1.27) 2.046 (2.03) **
lnURB 0.098 (0.57) − 0.010 (−0.03) 0.005 (0.02) 0.251 (0.94) − 0.017 (−0.04) 0.422 (1.19)
lnIND 0.085 (1.39) 0.112 (1.37) 0.000 (0.00) 0.246 (1.45) 0.075 (0.61) 0.137 (0.44)
lnSER 0.141 (1.94) * 0.193 (1.71) * 0.024 (0.17) 0.101 (0.82) 0.185 (1.26) 0.022 (0.08)
lnERG 0.094 (1.57) 0.207 (1.42) 0.068 (1.08) 0.051 (0.36) 0.169 (0.90) − 0.187 (−1.01)
[lnGDPPC]2 − 0.064 (−2.80) *** − 0.047 (−0.7) − 0.106 (−3.09) *** − 0.142 (−3.69) *** − 0.082 (−1.03) − 0.119 (−2.06) **
[lnURB]2

[lnGDPPC*lnURB]
Year Dummies Yes Yes Yes Yes Yes Yes
Country Dummies Yes Yes Yes
Diff-Hansen Testd 1.000 1.000 1.000
Observations 790 250 540 711 225 486
Groups 79 25 54 79 25 54

a t statistics in parentheses. b Standard errors are clustered at country level. c Statistical significance is indicated by: ***p < 0.01, **p < 0.05, *p < 0.1 d Difference in Hansen
tests of exogeneity of instrument subsets. The p values are listed. Here, we compare the case using no instruments with the case using the lags of explanatory variables as
instruments. Under the null, the explanatory variables in Fixed Effect models are exogenous. If the tests do not reject the hypothesis, then the explanatory variables can be treat as
exogenous. In column (4) and (6), the second and third lags are used, and only the second lags are used in column (5) due to limitation of observations.

Table E1
Regression results of Model 1 (no nonlinear variable).

(1) (2) (3) (4) (5) (6)
Fixed Effect Fixed Effect Fixed Effect Difference GMM Difference GMM Difference GMM
Whole Sample Low Income Middle Income Whole Sample Low Income Middle Income

lnPOP 0.325 (1.93) * 0.294 (0.72) 0.191 (0.89) 0.119 (0.45) 0.137 (0.33) − 0.015 (−0.05)
lnGDPPC 0.191 (2.23) ** 0.288 (1.26) 0.216 (2.28) ** − 0.031 (−0.15) 0.393 (1.44) 0.010 (0.04)
lnURB 0.195 (1.10) − 0.002 (0.00) 0.154 (0.77) 0.754 (1.41) 0.097 (0.22) 0.430 (1.10)
lnIND 0.076 (1.18) 0.080 (1.02) 0.040 (0.34) 0.064 (0.30) − 0.038 (−0.4) − 0.129 (−0.41)
lnSER 0.173 (2.14) ** 0.163 (1.58) 0.112 (0.70) 0.102 (0.60) 0.048 (0.32) − 0.075 (−0.31)
lnERG 0.076 (1.27) 0.187 (1.33) 0.079 (1.24) − 0.111 (−0.76) 0.070 (0.39) − 0.144 (−0.71)
[lnGDPPC]2

[lnURB]2

[lnGDPPC*lnURB]
Year Dummies Yes Yes Yes Yes Yes Yes
Country Dummies Yes Yes Yes
Diff-Hansen Testd 1.000 1.000 1.000
Observations 790 250 540 711 225 486
Groups 79 25 54 79 25 54

a t statistics in parentheses. b Standard errors are clustered at country level. c Statistical significance is indicated by: ***p < 0.01, **p < 0.05, *p < 0.1 d Difference in Hansen
tests of exogeneity of instrument subsets. The p values are listed. Here, we compare the case using no instruments with the case using the lags of explanatory variables as
instruments. Under the null, the explanatory variables in Fixed Effect models are exogenous. If the tests do not reject the hypothesis, then the explanatory variables can be treat as
exogenous. In column (4) and (6), the second and third lags are used, and only the second lags are used in column (5) due to limitation of observations.
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